# import streamlit as st
# from dotenv import load_dotenv
# from PyPDF2 import PdfReader
# from langchain.text_splitter import RecursiveCharacterTextSplitter
# from langchain.embeddings import HuggingFaceInstructEmbeddings
# from langchain.vectorstores import FAISS
# from langchain.memory import ConversationBufferMemory
# from langchain.chains import ConversationalRetrievalChain
# from htmlTemplates import css, bot_template, user_template
# from langchain.llms import HuggingFaceHub
# import psycopg2
# from pgvector import PGVector


# # Database connection parameters
# DB_HOST = "localhost"
# DB_PORT = "5432"
# DB_NAME = "chatbot"
# DB_USER = "admin"
# DB_PASSWORD = "admin"


# #Function to establish a database connection
# def connect_to_postgresql():
#     return psycopg2.connect(
#         host=DB_HOST,
#         port=DB_PORT,
#         database=DB_NAME,
#         user=DB_USER,
#         password=DB_PASSWORD
#     )


# def store_embeddings_in_postgresql(text_chunks, conn):
#     """Function to store embeddings in PostgreSQL using pgvector"""

#     # Create a cursor
#     cursor = conn.cursor()

#     try:
#         # Create a table if not exists
#         cursor.execute("""
#             CREATE TABLE IF NOT EXISTS embeddings (
#                 id SERIAL PRIMARY KEY,
#                 vector PG_VECTOR
#             )
#         """)

#         # Insert embeddings into the table
#         for text_chunk in text_chunks:
#             # To store embeddings in a 'vector' column in 'embeddings' table
#             cursor.execute("INSERT INTO embeddings (vector) VALUES (PG_VECTOR(%s))", (text_chunk,))

#         # Commit the transaction
#         conn.commit()
#         st.success("Embeddings stored successfully in PostgreSQL.")
#     except Exception as e:
#         # Rollback in case of an error
#         conn.rollback()
#         st.error(f"Error storing embeddings in PostgreSQL: {str(e)}")
#     finally:
#         # Close the cursor
#         cursor.close()


# def create_index_in_postgresql(conn):
#     """Function to create an index on the stored vectors using HNSW or IVFFIT"""

#     # Create a cursor
#     cursor = conn.cursor()

#     try:
#         # Create an index if not exists
#         cursor.execute("""
#             CREATE INDEX IF NOT EXISTS embeddings_index
#             ON embeddings
#             USING ivfflat (vector)
#         """)

#         # Commit the transaction
#         conn.commit()
#         st.success("Index created successfully in PostgreSQL.")
#     except Exception as e:
#         # Rollback in case of an error
#         conn.rollback()
#         st.error(f"Error creating index in PostgreSQL: {str(e)}")
#     finally:
#         # Close the cursor
#         cursor.close()


# def get_pdf_text(pdf):
#     """Upload pdf files and extract text"""
#     text = ""
#     pdf_reader = PdfReader(pdf)
#     for page in pdf_reader.pages:
#         text += page.extract_text()
#     return text


# def get_files(text_doc):
#     """Upload text files and extraxt text"""
#     text =""
#     for file in text_doc:
#         print(text)
#         if file.type == "text/plain":
#             # Read the text directly from the file
#             text += file.getvalue().decode("utf-8")
#         elif file.type == "application/pdf":
#             text += get_pdf_text(file)
#     return text

            
# def get_text_chunks(text):
#     """Create chunks of the extracted text"""
#     text_splitter = RecursiveCharacterTextSplitter(
#         chunk_size=900,
#         chunk_overlap=0,
#         separators="\n",
#         add_start_index = True,
#         length_function= len
#     )
#     chunks = text_splitter.split_text(text)
#     return chunks


# def get_vectorstore(text_chunks, conn):
#     """Create embeddings for the chunks and store them in a vectorstore"""
#     embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
#     vectorstore = PGVector.from_texts(texts=text_chunks, embedding=embeddings, connection=conn)
#     return vectorstore


# def get_conversation_chain(vectorstore):
#     llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.2, "max_length":1024})

#     memory = ConversationBufferMemory(
#         memory_key='chat_history', return_messages=True)
#     conversation_chain = ConversationalRetrievalChain.from_llm(
#         llm=llm,
#         retriever=vectorstore.as_retriever(),
#         memory=memory
#     )
#     return conversation_chain


# def handle_userinput(user_question):
#     response = st.session_state.conversation({'question': user_question})
#     st.session_state.chat_history = response['chat_history']

#     for i, message in enumerate(st.session_state.chat_history):
#         if i % 2 == 0:
#             st.write(user_template.replace(
#                 "{{MSG}}", message.content), unsafe_allow_html=True)
#         else:
#             st.write(bot_template.replace(
#                 "{{MSG}}", message.content), unsafe_allow_html=True)
            

# def main():
#     load_dotenv()
#     st.set_page_config(page_title="ChatBot")
#     st.write(css, unsafe_allow_html=True)

#     if "conversation" not in st.session_state:
#         st.session_state.conversation = None
#     if "chat_history" not in st.session_state:
#         st.session_state.chat_history = None

#     # Connect to PostgreSQL
#     conn = connect_to_postgresql()

#     st.header("Chat Bot")
#     user_question = st.text_input("Ask a question:")
#     if user_question:
#         handle_userinput(user_question, conn)

#     with st.sidebar:
#         st.subheader("Your documents")
#         pdf_docs = st.file_uploader(
#             "Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
#         if st.button("Process"):
#             with st.spinner("Processing"):
#                 # get text
#                 raw_text = get_files(pdf_docs)

#                 # get the text chunks
#                 text_chunks = get_text_chunks(raw_text)

#                 # store embeddings in PostgreSQL
#                 store_embeddings_in_postgresql(text_chunks, conn)

#                 # create vector store
#                 vectorstore = get_vectorstore(text_chunks, conn)

#                 # create index in PostgreSQL
#                 create_index_in_postgresql(conn)

#                 # create conversation chain
#                 st.session_state.conversation = get_conversation_chain(
#                     vectorstore)

# if __name__ == '__main__':
#     main()