Spaces:
Sleeping
Sleeping
Update sourcecode.py
Browse files- sourcecode.py +10 -334
sourcecode.py
CHANGED
@@ -1,29 +1,5 @@
|
|
1 |
-
"""
|
2 |
-
Helper scripts for generating synthetic images using diffusion model.
|
3 |
-
Functions:
|
4 |
-
- get_top_misclassified
|
5 |
-
- get_class_list
|
6 |
-
- generateClassPairs
|
7 |
-
- outputDirectory
|
8 |
-
- pipe_img
|
9 |
-
- createPrompts
|
10 |
-
- interpolatePrompts
|
11 |
-
- slerp
|
12 |
-
- get_middle_elements
|
13 |
-
- remove_middle
|
14 |
-
- genClassImg
|
15 |
-
- getMetadata
|
16 |
-
- groupbyInterpolation
|
17 |
-
- ungroupInterpolation
|
18 |
-
- groupAllbyInterpolation
|
19 |
-
- getPairIndices
|
20 |
-
- generateImagesFromDataset
|
21 |
-
- generateTrace
|
22 |
-
"""
|
23 |
-
|
24 |
import json
|
25 |
import os
|
26 |
-
|
27 |
import numpy as np
|
28 |
import pandas as pd
|
29 |
import torch
|
@@ -36,16 +12,7 @@ from torch import nn
|
|
36 |
from torchmetrics.functional.image import structural_similarity_index_measure as ssim
|
37 |
from torchvision import transforms
|
38 |
|
39 |
-
|
40 |
def get_top_misclassified(val_classifier_json):
|
41 |
-
"""
|
42 |
-
Retrieves the top misclassified classes from a validation classifier JSON file.
|
43 |
-
Args:
|
44 |
-
val_classifier_json (str): The path to the validation classifier JSON file.
|
45 |
-
Returns:
|
46 |
-
dict: A dictionary containing the top misclassified classes, where the keys are the class names
|
47 |
-
and the values are the number of misclassifications.
|
48 |
-
"""
|
49 |
with open(val_classifier_json) as f:
|
50 |
val_output = json.load(f)
|
51 |
val_metrics_df = pd.DataFrame.from_dict(
|
@@ -58,26 +25,11 @@ def get_top_misclassified(val_classifier_json):
|
|
58 |
|
59 |
|
60 |
def get_class_list(val_classifier_json):
|
61 |
-
"""
|
62 |
-
Retrieves the list of classes from the given validation classifier JSON file.
|
63 |
-
Args:
|
64 |
-
val_classifier_json (str): The path to the validation classifier JSON file.
|
65 |
-
Returns:
|
66 |
-
list: A sorted list of class names extracted from the JSON file.
|
67 |
-
"""
|
68 |
with open(val_classifier_json, "r") as f:
|
69 |
data = json.load(f)
|
70 |
return sorted(list(data["val_metrics_details"].keys()))
|
71 |
|
72 |
-
|
73 |
def generateClassPairs(val_classifier_json):
|
74 |
-
"""
|
75 |
-
Generate pairs of misclassified classes from the given validation classifier JSON.
|
76 |
-
Args:
|
77 |
-
val_classifier_json (str): The path to the validation classifier JSON file.
|
78 |
-
Returns:
|
79 |
-
list: A sorted list of pairs of misclassified classes.
|
80 |
-
"""
|
81 |
pairs = set()
|
82 |
misclassified_classes = get_top_misclassified(val_classifier_json)
|
83 |
for key, value in misclassified_classes.items():
|
@@ -85,17 +37,7 @@ def generateClassPairs(val_classifier_json):
|
|
85 |
pairs.add(tuple(sorted([key, v])))
|
86 |
return sorted(list(pairs))
|
87 |
|
88 |
-
|
89 |
def outputDirectory(class_pairs, synth_path, metadata_path):
|
90 |
-
"""
|
91 |
-
Creates the output directory structure for the synthesized data.
|
92 |
-
Args:
|
93 |
-
class_pairs (list): A list of class pairs.
|
94 |
-
synth_path (str): The path to the directory where the synthesized data will be stored.
|
95 |
-
metadata_path (str): The path to the directory where the metadata will be stored.
|
96 |
-
Returns:
|
97 |
-
None
|
98 |
-
"""
|
99 |
for id in class_pairs:
|
100 |
class_folder = f"{synth_path}/{id}"
|
101 |
if not (os.path.exists(class_folder)):
|
@@ -104,7 +46,6 @@ def outputDirectory(class_pairs, synth_path, metadata_path):
|
|
104 |
os.makedirs(metadata_path)
|
105 |
print("Info: Output directory ready.")
|
106 |
|
107 |
-
|
108 |
def pipe_img(
|
109 |
model_path,
|
110 |
device="cuda",
|
@@ -115,24 +56,6 @@ def pipe_img(
|
|
115 |
cpu_offload=False,
|
116 |
scheduler=None,
|
117 |
):
|
118 |
-
"""
|
119 |
-
Creates and returns an image-to-image pipeline for stable diffusion.
|
120 |
-
Args:
|
121 |
-
model_path (str): The path to the pretrained model.
|
122 |
-
device (str, optional): The device to use for computation. Defaults to "cuda".
|
123 |
-
apply_optimization (bool, optional): Whether to apply optimization techniques. Defaults to True.
|
124 |
-
use_torchcompile (bool, optional): Whether to use torchcompile for model compilation. Defaults to False.
|
125 |
-
ci_cb (tuple, optional): A tuple containing the cache interval and cache branch ID. Defaults to (5, 1).
|
126 |
-
use_safetensors (bool, optional): Whether to use safetensors. Defaults to None.
|
127 |
-
cpu_offload (bool, optional): Whether to enable CPU offloading. Defaults to False.
|
128 |
-
scheduler (LMSDiscreteScheduler, optional): The scheduler for the pipeline. Defaults to None.
|
129 |
-
Returns:
|
130 |
-
StableDiffusionImg2ImgPipeline: The image-to-image pipeline for stable diffusion.
|
131 |
-
"""
|
132 |
-
###############################
|
133 |
-
# Reference:
|
134 |
-
# Akimov, R. (2024) Images Interpolation with Stable Diffusion - Hugging Face Open-Source AI Cookbook. Available at: https://huggingface.co/learn/cookbook/en/stable_diffusion_interpolation (Accessed: 4 June 2024).
|
135 |
-
###############################
|
136 |
if scheduler is None:
|
137 |
scheduler = LMSDiscreteScheduler(
|
138 |
beta_start=0.00085,
|
@@ -150,16 +73,14 @@ def pipe_img(
|
|
150 |
if cpu_offload:
|
151 |
pipe.enable_model_cpu_offload()
|
152 |
if apply_optimization:
|
153 |
-
|
154 |
helper = DeepCacheSDHelper(pipe=pipe)
|
155 |
cache_interval, cache_branch_id = ci_cb
|
156 |
helper.set_params(
|
157 |
cache_interval=cache_interval, cache_branch_id=cache_branch_id
|
158 |
-
)
|
159 |
helper.enable()
|
160 |
-
|
161 |
-
# pipe.to("cuda")
|
162 |
-
# pipe.enable_xformers_memory_efficient_attention()
|
163 |
if use_torchcompile:
|
164 |
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
165 |
return pipe
|
@@ -171,18 +92,7 @@ def createPrompts(
|
|
171 |
use_default_negative_prompt=False,
|
172 |
negative_prompt=None,
|
173 |
):
|
174 |
-
|
175 |
-
Create prompts for image generation.
|
176 |
-
Args:
|
177 |
-
class_name_pairs (list): A list of two class names.
|
178 |
-
prompt_structure (str, optional): The structure of the prompt. Defaults to "a photo of a <class_name>".
|
179 |
-
use_default_negative_prompt (bool, optional): Whether to use the default negative prompt. Defaults to False.
|
180 |
-
negative_prompt (str, optional): The negative prompt to steer the generation away from certain features.
|
181 |
-
Returns:
|
182 |
-
tuple: A tuple containing two lists - prompts and negative_prompts.
|
183 |
-
prompts (list): Text prompts that describe the desired output image.
|
184 |
-
negative_prompts (list): Negative prompts that can be used to steer the generation away from certain features.
|
185 |
-
"""
|
186 |
if prompt_structure is None:
|
187 |
prompt_structure = "a photo of a <class_name>"
|
188 |
elif "<class_name>" not in prompt_structure:
|
@@ -204,11 +114,10 @@ def createPrompts(
|
|
204 |
print("Info: Negative prompt not provided, returning as None.")
|
205 |
return prompts, None
|
206 |
else:
|
207 |
-
|
208 |
negative_prompts = [negative_prompt] * len(prompts)
|
209 |
return prompts, negative_prompts
|
210 |
|
211 |
-
|
212 |
def interpolatePrompts(
|
213 |
prompts,
|
214 |
pipeline,
|
@@ -217,51 +126,10 @@ def interpolatePrompts(
|
|
217 |
remove_n_middle=0,
|
218 |
device="cuda",
|
219 |
):
|
220 |
-
"""
|
221 |
-
Interpolates prompts by generating intermediate embeddings between pairs of prompts.
|
222 |
-
Args:
|
223 |
-
prompts (List[str]): A list of prompts to be interpolated.
|
224 |
-
pipeline: The pipeline object containing the tokenizer and text encoder.
|
225 |
-
num_interpolation_steps (int): The number of interpolation steps between each pair of prompts.
|
226 |
-
sample_mid_interpolation (int): The number of intermediate embeddings to sample from the middle of the interpolated prompts.
|
227 |
-
remove_n_middle (int, optional): The number of middle embeddings to remove from the interpolated prompts. Defaults to 0.
|
228 |
-
device (str, optional): The device to run the interpolation on. Defaults to "cuda".
|
229 |
-
Returns:
|
230 |
-
interpolated_prompt_embeds (torch.Tensor): The interpolated prompt embeddings.
|
231 |
-
prompt_metadata (dict): Metadata about the interpolation process, including similarity scores and nearest class information.
|
232 |
-
e.g. if num_interpolation_steps = 10, sample_mid_interpolation = 6, remove_n_middle = 2
|
233 |
-
Interpolated: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
|
234 |
-
Sampled: [2, 3, 4, 5, 6, 7]
|
235 |
-
Removed: x x
|
236 |
-
Returns: [2, 3, 6, 7]
|
237 |
-
"""
|
238 |
-
|
239 |
-
###############################
|
240 |
-
# Reference:
|
241 |
-
# Akimov, R. (2024) Images Interpolation with Stable Diffusion - Hugging Face Open-Source AI Cookbook. Available at: https://huggingface.co/learn/cookbook/en/stable_diffusion_interpolation (Accessed: 4 June 2024).
|
242 |
-
###############################
|
243 |
-
|
244 |
def slerp(v0, v1, num, t0=0, t1=1):
|
245 |
-
"""
|
246 |
-
Performs spherical linear interpolation between two vectors.
|
247 |
-
Args:
|
248 |
-
v0 (torch.Tensor): The starting vector.
|
249 |
-
v1 (torch.Tensor): The ending vector.
|
250 |
-
num (int): The number of interpolation points.
|
251 |
-
t0 (float, optional): The starting time. Defaults to 0.
|
252 |
-
t1 (float, optional): The ending time. Defaults to 1.
|
253 |
-
Returns:
|
254 |
-
torch.Tensor: The interpolated vectors.
|
255 |
-
"""
|
256 |
-
###############################
|
257 |
-
# Reference:
|
258 |
-
# Karpathy, A. (2022) hacky stablediffusion code for generating videos, Gist. Available at: https://gist.github.com/karpathy/00103b0037c5aaea32fe1da1af553355 (Accessed: 4 June 2024).
|
259 |
-
###############################
|
260 |
v0 = v0.detach().cpu().numpy()
|
261 |
v1 = v1.detach().cpu().numpy()
|
262 |
-
|
263 |
def interpolation(t, v0, v1, DOT_THRESHOLD=0.9995):
|
264 |
-
"""helper function to spherically interpolate two arrays v1 v2"""
|
265 |
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
|
266 |
if np.abs(dot) > DOT_THRESHOLD:
|
267 |
v2 = (1 - t) * v0 + t * v1
|
@@ -274,28 +142,11 @@ def interpolatePrompts(
|
|
274 |
s1 = sin_theta_t / sin_theta_0
|
275 |
v2 = s0 * v0 + s1 * v1
|
276 |
return v2
|
277 |
-
|
278 |
t = np.linspace(t0, t1, num)
|
279 |
-
|
280 |
v3 = torch.tensor(np.array([interpolation(t[i], v0, v1) for i in range(num)]))
|
281 |
-
|
282 |
return v3
|
283 |
|
284 |
def get_middle_elements(lst, n):
|
285 |
-
"""
|
286 |
-
Returns a tuple containing a sublist of the middle elements of the given list `lst` and a range of indices of those elements.
|
287 |
-
Args:
|
288 |
-
lst (list): The list from which to extract the middle elements.
|
289 |
-
n (int): The number of middle elements to extract.
|
290 |
-
Returns:
|
291 |
-
tuple: A tuple containing the sublist of middle elements and a range of indices.
|
292 |
-
Raises:
|
293 |
-
None
|
294 |
-
Examples:
|
295 |
-
lst = [1, 2, 3, 4, 5]
|
296 |
-
get_middle_elements(lst, 3)
|
297 |
-
([2, 3, 4], range(2, 5))
|
298 |
-
"""
|
299 |
if n % 2 == 0: # Even number of elements
|
300 |
middle_index = len(lst) // 2 - 1
|
301 |
start = middle_index - n // 2 + 1
|
@@ -308,35 +159,18 @@ def interpolatePrompts(
|
|
308 |
return lst[start:end], range(start, end)
|
309 |
|
310 |
def remove_middle(data, n):
|
311 |
-
"""
|
312 |
-
Remove the middle n elements from a list.
|
313 |
-
Args:
|
314 |
-
data (list): The input list.
|
315 |
-
n (int): The number of elements to remove from the middle of the list.
|
316 |
-
Returns:
|
317 |
-
list: The modified list with the middle n elements removed.
|
318 |
-
Raises:
|
319 |
-
ValueError: If n is negative or greater than the length of the list.
|
320 |
-
"""
|
321 |
if n < 0 or n > len(data):
|
322 |
raise ValueError(
|
323 |
"Invalid value for n. It should be non-negative and less than half the list length"
|
324 |
)
|
325 |
-
|
326 |
-
# Find the middle index
|
327 |
middle = len(data) // 2
|
328 |
-
|
329 |
-
# Create slices to exclude the middle n elements
|
330 |
if n == 1:
|
331 |
return data[:middle] + data[middle + 1 :]
|
332 |
elif n % 2 == 0:
|
333 |
return data[: middle - n // 2] + data[middle + n // 2 :]
|
334 |
else:
|
335 |
return data[: middle - n // 2] + data[middle + n // 2 + 1 :]
|
336 |
-
|
337 |
batch_size = len(prompts)
|
338 |
-
|
339 |
-
# Tokenizing and encoding prompts into embeddings.
|
340 |
prompts_tokens = pipeline.tokenizer(
|
341 |
prompts,
|
342 |
padding="max_length",
|
@@ -345,25 +179,19 @@ def interpolatePrompts(
|
|
345 |
return_tensors="pt",
|
346 |
)
|
347 |
prompts_embeds = pipeline.text_encoder(prompts_tokens.input_ids.to(device))[0]
|
348 |
-
|
349 |
-
# Interpolating between embeddings pairs for the given number of interpolation steps.
|
350 |
interpolated_prompt_embeds = []
|
351 |
-
|
352 |
for i in range(batch_size - 1):
|
353 |
interpolated_prompt_embeds.append(
|
354 |
slerp(prompts_embeds[i], prompts_embeds[i + 1], num_interpolation_steps)
|
355 |
)
|
356 |
-
|
357 |
full_interpolated_prompt_embeds = interpolated_prompt_embeds[:]
|
358 |
interpolated_prompt_embeds[0], sample_range = get_middle_elements(
|
359 |
interpolated_prompt_embeds[0], sample_mid_interpolation
|
360 |
)
|
361 |
-
|
362 |
if remove_n_middle > 0:
|
363 |
interpolated_prompt_embeds[0] = remove_middle(
|
364 |
interpolated_prompt_embeds[0], remove_n_middle
|
365 |
)
|
366 |
-
|
367 |
prompt_metadata = dict()
|
368 |
similarity = nn.CosineSimilarity(dim=-1, eps=1e-6)
|
369 |
for i in range(num_interpolation_steps):
|
@@ -384,7 +212,6 @@ def interpolatePrompts(
|
|
384 |
.item()
|
385 |
)
|
386 |
relative_distance = class1_sim / (class1_sim + class2_sim)
|
387 |
-
|
388 |
prompt_metadata[i] = {
|
389 |
"selected": i in sample_range,
|
390 |
"similarity": {
|
@@ -398,8 +225,7 @@ def interpolatePrompts(
|
|
398 |
|
399 |
interpolated_prompt_embeds = torch.cat(interpolated_prompt_embeds, dim=0).to(device)
|
400 |
return interpolated_prompt_embeds, prompt_metadata
|
401 |
-
|
402 |
-
|
403 |
def genClassImg(
|
404 |
pipeline,
|
405 |
pos_embed,
|
@@ -413,24 +239,6 @@ def genClassImg(
|
|
413 |
num_inference_steps=25,
|
414 |
guidance_scale=7.5,
|
415 |
):
|
416 |
-
"""
|
417 |
-
Generate class image using the given inputs.
|
418 |
-
Args:
|
419 |
-
pipeline: The pipeline object used for image generation.
|
420 |
-
pos_embed: The positive embedding for the class.
|
421 |
-
neg_embed: The negative embedding for the class (optional).
|
422 |
-
input_image: The input image for guidance (optional).
|
423 |
-
generator: The generator model used for image generation.
|
424 |
-
latents: The latent vectors used for image generation.
|
425 |
-
num_imgs: The number of images to generate (default is 1).
|
426 |
-
height: The height of the generated images (default is 512).
|
427 |
-
width: The width of the generated images (default is 512).
|
428 |
-
num_inference_steps: The number of inference steps for image generation (default is 25).
|
429 |
-
guidance_scale: The scale factor for guidance (default is 7.5).
|
430 |
-
Returns:
|
431 |
-
The generated class image.
|
432 |
-
"""
|
433 |
-
|
434 |
if neg_embed is not None:
|
435 |
npe = neg_embed[None, ...]
|
436 |
else:
|
@@ -449,7 +257,6 @@ def genClassImg(
|
|
449 |
image=input_image,
|
450 |
).images[0]
|
451 |
|
452 |
-
|
453 |
def getMetadata(
|
454 |
class_pairs,
|
455 |
path,
|
@@ -469,32 +276,7 @@ def getMetadata(
|
|
469 |
save_json=True,
|
470 |
save_path=".",
|
471 |
):
|
472 |
-
"""
|
473 |
-
Generate metadata for the given parameters.
|
474 |
-
Args:
|
475 |
-
class_pairs (list): List of class pairs.
|
476 |
-
path (str): Path to the data.
|
477 |
-
seed (int): Seed value for randomization.
|
478 |
-
guidance_scale (float): Scale factor for guidance.
|
479 |
-
num_inference_steps (int): Number of inference steps.
|
480 |
-
num_interpolation_steps (int): Number of interpolation steps.
|
481 |
-
sample_mid_interpolation (bool): Flag to sample mid-interpolation.
|
482 |
-
height (int): Height of the image.
|
483 |
-
width (int): Width of the image.
|
484 |
-
prompts (list): List of prompts.
|
485 |
-
negative_prompts (list): List of negative prompts.
|
486 |
-
pipeline (object): Pipeline object.
|
487 |
-
prompt_metadata (dict): Metadata for prompts.
|
488 |
-
negative_prompt_metadata (dict): Metadata for negative prompts.
|
489 |
-
ssim_metadata (dict, optional): SSIM scores metadata. Defaults to None.
|
490 |
-
save_json (bool, optional): Flag to save metadata as JSON. Defaults to True.
|
491 |
-
save_path (str, optional): Path to save the JSON file. Defaults to ".".
|
492 |
-
Returns:
|
493 |
-
dict: Generated metadata.
|
494 |
-
"""
|
495 |
-
|
496 |
metadata = dict()
|
497 |
-
|
498 |
metadata["class_pairs"] = class_pairs
|
499 |
metadata["path"] = path
|
500 |
metadata["seed"] = seed
|
@@ -524,36 +306,18 @@ def getMetadata(
|
|
524 |
json.dump(metadata, f, indent=4)
|
525 |
return metadata
|
526 |
|
527 |
-
|
528 |
def groupbyInterpolation(dir_to_classfolder):
|
529 |
-
"""
|
530 |
-
Group files in a directory by interpolation step.
|
531 |
-
Args:
|
532 |
-
dir_to_classfolder (str): The path to the directory containing the files.
|
533 |
-
Returns:
|
534 |
-
None
|
535 |
-
"""
|
536 |
files = [
|
537 |
(f.split(sep="_")[1].split(sep=".")[0], os.path.join(dir_to_classfolder, f))
|
538 |
for f in os.listdir(dir_to_classfolder)
|
539 |
]
|
540 |
-
# create a subfolder for each step of the interpolation
|
541 |
for interpolation_step, file_path in files:
|
542 |
new_dir = os.path.join(dir_to_classfolder, interpolation_step)
|
543 |
if not os.path.exists(new_dir):
|
544 |
os.makedirs(new_dir)
|
545 |
os.rename(file_path, os.path.join(new_dir, os.path.basename(file_path)))
|
546 |
|
547 |
-
|
548 |
def ungroupInterpolation(dir_to_classfolder):
|
549 |
-
"""
|
550 |
-
Moves all files from subdirectories within `dir_to_classfolder` to `dir_to_classfolder` itself,
|
551 |
-
and then removes the subdirectories.
|
552 |
-
Args:
|
553 |
-
dir_to_classfolder (str): The path to the directory containing the subdirectories.
|
554 |
-
Returns:
|
555 |
-
None
|
556 |
-
"""
|
557 |
for interpolation_step in os.listdir(dir_to_classfolder):
|
558 |
if os.path.isdir(os.path.join(dir_to_classfolder, interpolation_step)):
|
559 |
for f in os.listdir(os.path.join(dir_to_classfolder, interpolation_step)):
|
@@ -563,21 +327,13 @@ def ungroupInterpolation(dir_to_classfolder):
|
|
563 |
)
|
564 |
os.rmdir(os.path.join(dir_to_classfolder, interpolation_step))
|
565 |
|
566 |
-
|
567 |
def groupAllbyInterpolation(
|
568 |
data_path,
|
569 |
group=True,
|
570 |
fn_group=groupbyInterpolation,
|
571 |
fn_ungroup=ungroupInterpolation,
|
572 |
):
|
573 |
-
|
574 |
-
Group or ungroup all data classes by interpolation.
|
575 |
-
Args:
|
576 |
-
data_path (str): The path to the data.
|
577 |
-
group (bool, optional): Whether to group the data. Defaults to True.
|
578 |
-
fn_group (function, optional): The function to use for grouping. Defaults to groupbyInterpolation.
|
579 |
-
fn_ungroup (function, optional): The function to use for ungrouping. Defaults to ungroupInterpolation.
|
580 |
-
"""
|
581 |
data_classes = sorted(os.listdir(data_path))
|
582 |
if group:
|
583 |
fn = fn_group
|
@@ -589,17 +345,7 @@ def groupAllbyInterpolation(
|
|
589 |
fn(c_path)
|
590 |
print(f"Processed {c}")
|
591 |
|
592 |
-
|
593 |
def getPairIndices(subset_len, total_pair_count=1, seed=None):
|
594 |
-
"""
|
595 |
-
Generate pairs of indices for a given subset length.
|
596 |
-
Args:
|
597 |
-
subset_len (int): The length of the subset.
|
598 |
-
total_pair_count (int, optional): The total number of pairs to generate. Defaults to 1.
|
599 |
-
seed (int, optional): The seed value for the random number generator. Defaults to None.
|
600 |
-
Returns:
|
601 |
-
list: A list of pairs of indices.
|
602 |
-
"""
|
603 |
rng = np.random.default_rng(seed)
|
604 |
group_size = (subset_len + total_pair_count - 1) // total_pair_count
|
605 |
numbers = list(range(subset_len))
|
@@ -611,7 +357,6 @@ def getPairIndices(subset_len, total_pair_count=1, seed=None):
|
|
611 |
groups = numbers[: group_size * total_pair_count].reshape(-1, group_size)
|
612 |
return groups.tolist()
|
613 |
|
614 |
-
|
615 |
def generateImagesFromDataset(
|
616 |
img_subsets,
|
617 |
class_iterables,
|
@@ -631,31 +376,6 @@ def generateImagesFromDataset(
|
|
631 |
device="cuda",
|
632 |
return_images=False,
|
633 |
):
|
634 |
-
"""
|
635 |
-
Generates images from a dataset using the given parameters.
|
636 |
-
Args:
|
637 |
-
img_subsets (dict): A dictionary containing image subsets for each class.
|
638 |
-
class_iterables (dict): A dictionary containing iterable objects for each class.
|
639 |
-
pipeline (object): The pipeline object used for image generation.
|
640 |
-
interpolated_prompt_embeds (list): A list of interpolated prompt embeddings.
|
641 |
-
interpolated_negative_prompts_embeds (list): A list of interpolated negative prompt embeddings.
|
642 |
-
num_inference_steps (int): The number of inference steps for image generation.
|
643 |
-
guidance_scale (float): The scale factor for guidance loss during image generation.
|
644 |
-
height (int, optional): The height of the generated images. Defaults to 512.
|
645 |
-
width (int, optional): The width of the generated images. Defaults to 512.
|
646 |
-
seed (int, optional): The seed value for random number generation. Defaults to None.
|
647 |
-
save_path (str, optional): The path to save the generated images. Defaults to ".".
|
648 |
-
class_pairs (tuple, optional): A tuple containing pairs of class identifiers. Defaults to ("0", "1").
|
649 |
-
save_image (bool, optional): Whether to save the generated images. Defaults to True.
|
650 |
-
image_type (str, optional): The file format of the saved images. Defaults to "jpg".
|
651 |
-
interpolate_range (str, optional): The range of interpolation for prompt embeddings.
|
652 |
-
Possible values are "full", "nearest", or "furthest". Defaults to "full".
|
653 |
-
device (str, optional): The device to use for image generation. Defaults to "cuda".
|
654 |
-
return_images (bool, optional): Whether to return the generated images. Defaults to False.
|
655 |
-
Returns:
|
656 |
-
dict or tuple: If return_images is True, returns a dictionary containing the generated images for each class and a dictionary containing the SSIM scores for each class and interpolation step.
|
657 |
-
If return_images is False, returns a dictionary containing the SSIM scores for each class and interpolation step.
|
658 |
-
"""
|
659 |
if interpolate_range == "nearest":
|
660 |
nearest_half = True
|
661 |
furthest_half = False
|
@@ -675,14 +395,12 @@ def generateImagesFromDataset(
|
|
675 |
(1, pipeline.unet.config.in_channels, height // 8, width // 8),
|
676 |
generator=generator,
|
677 |
).to(device)
|
678 |
-
|
679 |
embed_len = len(interpolated_prompt_embeds)
|
680 |
embed_pairs = zip(interpolated_prompt_embeds, interpolated_negative_prompts_embeds)
|
681 |
embed_pairs_list = list(embed_pairs)
|
682 |
if return_images:
|
683 |
class_images = dict()
|
684 |
class_ssim = dict()
|
685 |
-
|
686 |
if nearest_half or furthest_half:
|
687 |
if nearest_half:
|
688 |
steps_range = (range(0, embed_len // 2), range(embed_len // 2, embed_len))
|
@@ -694,7 +412,6 @@ def generateImagesFromDataset(
|
|
694 |
else:
|
695 |
steps_range = (range(embed_len), range(embed_len))
|
696 |
mutiplier = 1
|
697 |
-
|
698 |
for class_iter, class_id in enumerate(class_pairs):
|
699 |
if return_images:
|
700 |
class_images[class_id] = list()
|
@@ -702,20 +419,14 @@ def generateImagesFromDataset(
|
|
702 |
i: {"ssim_sum": 0, "ssim_count": 0, "ssim_avg": 0} for i in range(embed_len)
|
703 |
}
|
704 |
subset_len = len(img_subsets[class_id])
|
705 |
-
|
706 |
-
# group_map: index is the image id, element is the group id
|
707 |
-
# steps_range[class_iter] determines the range of steps to interpolate for the class,
|
708 |
-
# so the first half of the steps are for the first class and so on. range(0,7) and range(8,15) for 16 steps
|
709 |
-
# then the rest is to multiply the steps to cover the whole subset + remainder
|
710 |
group_map = (
|
711 |
list(steps_range[class_iter]) * mutiplier * (subset_len // embed_len + 1)
|
712 |
)
|
713 |
rng.shuffle(
|
714 |
group_map
|
715 |
-
)
|
716 |
-
|
717 |
iter_indices = class_iterables[class_id].pop()
|
718 |
-
# generate images for each image in the class, randomly selecting an interpolated step
|
719 |
for image_id in iter_indices:
|
720 |
img, trg = img_subsets[class_id][image_id]
|
721 |
input_image = img.unsqueeze(0)
|
@@ -756,21 +467,17 @@ def generateImagesFromDataset(
|
|
756 |
generated_image.save(
|
757 |
f"{save_path}/{class_id}/{seed}-{image_id}_{interpolate_step}.{image_type}"
|
758 |
)
|
759 |
-
|
760 |
-
# calculate ssim avg for the class
|
761 |
for i_step in range(embed_len):
|
762 |
if class_ssim[class_id][i_step]["ssim_count"] > 0:
|
763 |
class_ssim[class_id][i_step]["ssim_avg"] = (
|
764 |
class_ssim[class_id][i_step]["ssim_sum"]
|
765 |
/ class_ssim[class_id][i_step]["ssim_count"]
|
766 |
)
|
767 |
-
|
768 |
if return_images:
|
769 |
return class_images, class_ssim
|
770 |
else:
|
771 |
return class_ssim
|
772 |
|
773 |
-
|
774 |
def generateTrace(
|
775 |
prompts,
|
776 |
img_subsets,
|
@@ -785,24 +492,6 @@ def generateTrace(
|
|
785 |
interpolate_range="full",
|
786 |
save_prompt_embeds=False,
|
787 |
):
|
788 |
-
"""
|
789 |
-
Generate a trace dictionary containing information about the generated images.
|
790 |
-
Args:
|
791 |
-
prompts (list): List of prompt texts.
|
792 |
-
img_subsets (dict): Dictionary containing image subsets for each class.
|
793 |
-
class_iterables (dict): Dictionary containing iterable objects for each class.
|
794 |
-
interpolated_prompt_embeds (torch.Tensor): Tensor containing interpolated prompt embeddings.
|
795 |
-
interpolated_negative_prompts_embeds (torch.Tensor): Tensor containing interpolated negative prompt embeddings.
|
796 |
-
subset_indices (dict): Dictionary containing indices of subsets for each class.
|
797 |
-
seed (int, optional): Seed value for random number generation. Defaults to None.
|
798 |
-
save_path (str, optional): Path to save the generated images. Defaults to ".".
|
799 |
-
class_pairs (tuple, optional): Tuple containing class pairs. Defaults to ("0", "1").
|
800 |
-
image_type (str, optional): Type of the generated images. Defaults to "jpg".
|
801 |
-
interpolate_range (str, optional): Range of interpolation. Defaults to "full".
|
802 |
-
save_prompt_embeds (bool, optional): Flag to save prompt embeddings. Defaults to False.
|
803 |
-
Returns:
|
804 |
-
dict: Trace dictionary containing information about the generated images.
|
805 |
-
"""
|
806 |
trace_dict = {
|
807 |
"class_pairs": list(),
|
808 |
"class_id": list(),
|
@@ -815,7 +504,6 @@ def generateTrace(
|
|
815 |
"output_file_path": list(),
|
816 |
"input_prompts_embed": list(),
|
817 |
}
|
818 |
-
|
819 |
if interpolate_range == "nearest":
|
820 |
nearest_half = True
|
821 |
furthest_half = False
|
@@ -825,7 +513,6 @@ def generateTrace(
|
|
825 |
else:
|
826 |
nearest_half = False
|
827 |
furthest_half = False
|
828 |
-
|
829 |
if seed is None:
|
830 |
seed = torch.Generator().seed()
|
831 |
rng = np.random.default_rng(seed)
|
@@ -836,7 +523,6 @@ def generateTrace(
|
|
836 |
interpolated_negative_prompts_embeds.cpu().numpy(),
|
837 |
)
|
838 |
embed_pairs_list = list(embed_pairs)
|
839 |
-
|
840 |
if nearest_half or furthest_half:
|
841 |
if nearest_half:
|
842 |
steps_range = (range(0, embed_len // 2), range(embed_len // 2, embed_len))
|
@@ -848,24 +534,15 @@ def generateTrace(
|
|
848 |
else:
|
849 |
steps_range = (range(embed_len), range(embed_len))
|
850 |
mutiplier = 1
|
851 |
-
|
852 |
for class_iter, class_id in enumerate(class_pairs):
|
853 |
-
|
854 |
subset_len = len(img_subsets[class_id])
|
855 |
-
# to efficiently randomize the steps to interpolate for each image in the class, group_map is used
|
856 |
-
# group_map: index is the image id, element is the group id
|
857 |
-
# steps_range[class_iter] determines the range of steps to interpolate for the class,
|
858 |
-
# so the first half of the steps are for the first class and so on. range(0,7) and range(8,15) for 16 steps
|
859 |
-
# then the rest is to multiply the steps to cover the whole subset + remainder
|
860 |
group_map = (
|
861 |
list(steps_range[class_iter]) * mutiplier * (subset_len // embed_len + 1)
|
862 |
)
|
863 |
rng.shuffle(
|
864 |
group_map
|
865 |
-
)
|
866 |
-
|
867 |
iter_indices = class_iterables[class_id].pop()
|
868 |
-
# generate images for each image in the class, randomly selecting an interpolated step
|
869 |
for image_id in iter_indices:
|
870 |
class_ds = img_subsets[class_id]
|
871 |
interpolate_step = group_map[image_id]
|
@@ -878,7 +555,6 @@ def generateTrace(
|
|
878 |
input_prompts_embed = embed_pairs_list[interpolate_step]
|
879 |
else:
|
880 |
input_prompts_embed = None
|
881 |
-
|
882 |
trace_dict["class_pairs"].append(class_pairs)
|
883 |
trace_dict["class_id"].append(class_id)
|
884 |
trace_dict["image_id"].append(image_id)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import json
|
2 |
import os
|
|
|
3 |
import numpy as np
|
4 |
import pandas as pd
|
5 |
import torch
|
|
|
12 |
from torchmetrics.functional.image import structural_similarity_index_measure as ssim
|
13 |
from torchvision import transforms
|
14 |
|
|
|
15 |
def get_top_misclassified(val_classifier_json):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
with open(val_classifier_json) as f:
|
17 |
val_output = json.load(f)
|
18 |
val_metrics_df = pd.DataFrame.from_dict(
|
|
|
25 |
|
26 |
|
27 |
def get_class_list(val_classifier_json):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
with open(val_classifier_json, "r") as f:
|
29 |
data = json.load(f)
|
30 |
return sorted(list(data["val_metrics_details"].keys()))
|
31 |
|
|
|
32 |
def generateClassPairs(val_classifier_json):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
pairs = set()
|
34 |
misclassified_classes = get_top_misclassified(val_classifier_json)
|
35 |
for key, value in misclassified_classes.items():
|
|
|
37 |
pairs.add(tuple(sorted([key, v])))
|
38 |
return sorted(list(pairs))
|
39 |
|
|
|
40 |
def outputDirectory(class_pairs, synth_path, metadata_path):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
for id in class_pairs:
|
42 |
class_folder = f"{synth_path}/{id}"
|
43 |
if not (os.path.exists(class_folder)):
|
|
|
46 |
os.makedirs(metadata_path)
|
47 |
print("Info: Output directory ready.")
|
48 |
|
|
|
49 |
def pipe_img(
|
50 |
model_path,
|
51 |
device="cuda",
|
|
|
56 |
cpu_offload=False,
|
57 |
scheduler=None,
|
58 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
if scheduler is None:
|
60 |
scheduler = LMSDiscreteScheduler(
|
61 |
beta_start=0.00085,
|
|
|
73 |
if cpu_offload:
|
74 |
pipe.enable_model_cpu_offload()
|
75 |
if apply_optimization:
|
76 |
+
|
77 |
helper = DeepCacheSDHelper(pipe=pipe)
|
78 |
cache_interval, cache_branch_id = ci_cb
|
79 |
helper.set_params(
|
80 |
cache_interval=cache_interval, cache_branch_id=cache_branch_id
|
81 |
+
)
|
82 |
helper.enable()
|
83 |
+
|
|
|
|
|
84 |
if use_torchcompile:
|
85 |
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
86 |
return pipe
|
|
|
92 |
use_default_negative_prompt=False,
|
93 |
negative_prompt=None,
|
94 |
):
|
95 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
if prompt_structure is None:
|
97 |
prompt_structure = "a photo of a <class_name>"
|
98 |
elif "<class_name>" not in prompt_structure:
|
|
|
114 |
print("Info: Negative prompt not provided, returning as None.")
|
115 |
return prompts, None
|
116 |
else:
|
117 |
+
|
118 |
negative_prompts = [negative_prompt] * len(prompts)
|
119 |
return prompts, negative_prompts
|
120 |
|
|
|
121 |
def interpolatePrompts(
|
122 |
prompts,
|
123 |
pipeline,
|
|
|
126 |
remove_n_middle=0,
|
127 |
device="cuda",
|
128 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
def slerp(v0, v1, num, t0=0, t1=1):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
v0 = v0.detach().cpu().numpy()
|
131 |
v1 = v1.detach().cpu().numpy()
|
|
|
132 |
def interpolation(t, v0, v1, DOT_THRESHOLD=0.9995):
|
|
|
133 |
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
|
134 |
if np.abs(dot) > DOT_THRESHOLD:
|
135 |
v2 = (1 - t) * v0 + t * v1
|
|
|
142 |
s1 = sin_theta_t / sin_theta_0
|
143 |
v2 = s0 * v0 + s1 * v1
|
144 |
return v2
|
|
|
145 |
t = np.linspace(t0, t1, num)
|
|
|
146 |
v3 = torch.tensor(np.array([interpolation(t[i], v0, v1) for i in range(num)]))
|
|
|
147 |
return v3
|
148 |
|
149 |
def get_middle_elements(lst, n):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
if n % 2 == 0: # Even number of elements
|
151 |
middle_index = len(lst) // 2 - 1
|
152 |
start = middle_index - n // 2 + 1
|
|
|
159 |
return lst[start:end], range(start, end)
|
160 |
|
161 |
def remove_middle(data, n):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
if n < 0 or n > len(data):
|
163 |
raise ValueError(
|
164 |
"Invalid value for n. It should be non-negative and less than half the list length"
|
165 |
)
|
|
|
|
|
166 |
middle = len(data) // 2
|
|
|
|
|
167 |
if n == 1:
|
168 |
return data[:middle] + data[middle + 1 :]
|
169 |
elif n % 2 == 0:
|
170 |
return data[: middle - n // 2] + data[middle + n // 2 :]
|
171 |
else:
|
172 |
return data[: middle - n // 2] + data[middle + n // 2 + 1 :]
|
|
|
173 |
batch_size = len(prompts)
|
|
|
|
|
174 |
prompts_tokens = pipeline.tokenizer(
|
175 |
prompts,
|
176 |
padding="max_length",
|
|
|
179 |
return_tensors="pt",
|
180 |
)
|
181 |
prompts_embeds = pipeline.text_encoder(prompts_tokens.input_ids.to(device))[0]
|
|
|
|
|
182 |
interpolated_prompt_embeds = []
|
|
|
183 |
for i in range(batch_size - 1):
|
184 |
interpolated_prompt_embeds.append(
|
185 |
slerp(prompts_embeds[i], prompts_embeds[i + 1], num_interpolation_steps)
|
186 |
)
|
|
|
187 |
full_interpolated_prompt_embeds = interpolated_prompt_embeds[:]
|
188 |
interpolated_prompt_embeds[0], sample_range = get_middle_elements(
|
189 |
interpolated_prompt_embeds[0], sample_mid_interpolation
|
190 |
)
|
|
|
191 |
if remove_n_middle > 0:
|
192 |
interpolated_prompt_embeds[0] = remove_middle(
|
193 |
interpolated_prompt_embeds[0], remove_n_middle
|
194 |
)
|
|
|
195 |
prompt_metadata = dict()
|
196 |
similarity = nn.CosineSimilarity(dim=-1, eps=1e-6)
|
197 |
for i in range(num_interpolation_steps):
|
|
|
212 |
.item()
|
213 |
)
|
214 |
relative_distance = class1_sim / (class1_sim + class2_sim)
|
|
|
215 |
prompt_metadata[i] = {
|
216 |
"selected": i in sample_range,
|
217 |
"similarity": {
|
|
|
225 |
|
226 |
interpolated_prompt_embeds = torch.cat(interpolated_prompt_embeds, dim=0).to(device)
|
227 |
return interpolated_prompt_embeds, prompt_metadata
|
228 |
+
|
|
|
229 |
def genClassImg(
|
230 |
pipeline,
|
231 |
pos_embed,
|
|
|
239 |
num_inference_steps=25,
|
240 |
guidance_scale=7.5,
|
241 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
if neg_embed is not None:
|
243 |
npe = neg_embed[None, ...]
|
244 |
else:
|
|
|
257 |
image=input_image,
|
258 |
).images[0]
|
259 |
|
|
|
260 |
def getMetadata(
|
261 |
class_pairs,
|
262 |
path,
|
|
|
276 |
save_json=True,
|
277 |
save_path=".",
|
278 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
279 |
metadata = dict()
|
|
|
280 |
metadata["class_pairs"] = class_pairs
|
281 |
metadata["path"] = path
|
282 |
metadata["seed"] = seed
|
|
|
306 |
json.dump(metadata, f, indent=4)
|
307 |
return metadata
|
308 |
|
|
|
309 |
def groupbyInterpolation(dir_to_classfolder):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
310 |
files = [
|
311 |
(f.split(sep="_")[1].split(sep=".")[0], os.path.join(dir_to_classfolder, f))
|
312 |
for f in os.listdir(dir_to_classfolder)
|
313 |
]
|
|
|
314 |
for interpolation_step, file_path in files:
|
315 |
new_dir = os.path.join(dir_to_classfolder, interpolation_step)
|
316 |
if not os.path.exists(new_dir):
|
317 |
os.makedirs(new_dir)
|
318 |
os.rename(file_path, os.path.join(new_dir, os.path.basename(file_path)))
|
319 |
|
|
|
320 |
def ungroupInterpolation(dir_to_classfolder):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
321 |
for interpolation_step in os.listdir(dir_to_classfolder):
|
322 |
if os.path.isdir(os.path.join(dir_to_classfolder, interpolation_step)):
|
323 |
for f in os.listdir(os.path.join(dir_to_classfolder, interpolation_step)):
|
|
|
327 |
)
|
328 |
os.rmdir(os.path.join(dir_to_classfolder, interpolation_step))
|
329 |
|
|
|
330 |
def groupAllbyInterpolation(
|
331 |
data_path,
|
332 |
group=True,
|
333 |
fn_group=groupbyInterpolation,
|
334 |
fn_ungroup=ungroupInterpolation,
|
335 |
):
|
336 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
337 |
data_classes = sorted(os.listdir(data_path))
|
338 |
if group:
|
339 |
fn = fn_group
|
|
|
345 |
fn(c_path)
|
346 |
print(f"Processed {c}")
|
347 |
|
|
|
348 |
def getPairIndices(subset_len, total_pair_count=1, seed=None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
349 |
rng = np.random.default_rng(seed)
|
350 |
group_size = (subset_len + total_pair_count - 1) // total_pair_count
|
351 |
numbers = list(range(subset_len))
|
|
|
357 |
groups = numbers[: group_size * total_pair_count].reshape(-1, group_size)
|
358 |
return groups.tolist()
|
359 |
|
|
|
360 |
def generateImagesFromDataset(
|
361 |
img_subsets,
|
362 |
class_iterables,
|
|
|
376 |
device="cuda",
|
377 |
return_images=False,
|
378 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
379 |
if interpolate_range == "nearest":
|
380 |
nearest_half = True
|
381 |
furthest_half = False
|
|
|
395 |
(1, pipeline.unet.config.in_channels, height // 8, width // 8),
|
396 |
generator=generator,
|
397 |
).to(device)
|
|
|
398 |
embed_len = len(interpolated_prompt_embeds)
|
399 |
embed_pairs = zip(interpolated_prompt_embeds, interpolated_negative_prompts_embeds)
|
400 |
embed_pairs_list = list(embed_pairs)
|
401 |
if return_images:
|
402 |
class_images = dict()
|
403 |
class_ssim = dict()
|
|
|
404 |
if nearest_half or furthest_half:
|
405 |
if nearest_half:
|
406 |
steps_range = (range(0, embed_len // 2), range(embed_len // 2, embed_len))
|
|
|
412 |
else:
|
413 |
steps_range = (range(embed_len), range(embed_len))
|
414 |
mutiplier = 1
|
|
|
415 |
for class_iter, class_id in enumerate(class_pairs):
|
416 |
if return_images:
|
417 |
class_images[class_id] = list()
|
|
|
419 |
i: {"ssim_sum": 0, "ssim_count": 0, "ssim_avg": 0} for i in range(embed_len)
|
420 |
}
|
421 |
subset_len = len(img_subsets[class_id])
|
422 |
+
|
|
|
|
|
|
|
|
|
423 |
group_map = (
|
424 |
list(steps_range[class_iter]) * mutiplier * (subset_len // embed_len + 1)
|
425 |
)
|
426 |
rng.shuffle(
|
427 |
group_map
|
428 |
+
)
|
|
|
429 |
iter_indices = class_iterables[class_id].pop()
|
|
|
430 |
for image_id in iter_indices:
|
431 |
img, trg = img_subsets[class_id][image_id]
|
432 |
input_image = img.unsqueeze(0)
|
|
|
467 |
generated_image.save(
|
468 |
f"{save_path}/{class_id}/{seed}-{image_id}_{interpolate_step}.{image_type}"
|
469 |
)
|
|
|
|
|
470 |
for i_step in range(embed_len):
|
471 |
if class_ssim[class_id][i_step]["ssim_count"] > 0:
|
472 |
class_ssim[class_id][i_step]["ssim_avg"] = (
|
473 |
class_ssim[class_id][i_step]["ssim_sum"]
|
474 |
/ class_ssim[class_id][i_step]["ssim_count"]
|
475 |
)
|
|
|
476 |
if return_images:
|
477 |
return class_images, class_ssim
|
478 |
else:
|
479 |
return class_ssim
|
480 |
|
|
|
481 |
def generateTrace(
|
482 |
prompts,
|
483 |
img_subsets,
|
|
|
492 |
interpolate_range="full",
|
493 |
save_prompt_embeds=False,
|
494 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
495 |
trace_dict = {
|
496 |
"class_pairs": list(),
|
497 |
"class_id": list(),
|
|
|
504 |
"output_file_path": list(),
|
505 |
"input_prompts_embed": list(),
|
506 |
}
|
|
|
507 |
if interpolate_range == "nearest":
|
508 |
nearest_half = True
|
509 |
furthest_half = False
|
|
|
513 |
else:
|
514 |
nearest_half = False
|
515 |
furthest_half = False
|
|
|
516 |
if seed is None:
|
517 |
seed = torch.Generator().seed()
|
518 |
rng = np.random.default_rng(seed)
|
|
|
523 |
interpolated_negative_prompts_embeds.cpu().numpy(),
|
524 |
)
|
525 |
embed_pairs_list = list(embed_pairs)
|
|
|
526 |
if nearest_half or furthest_half:
|
527 |
if nearest_half:
|
528 |
steps_range = (range(0, embed_len // 2), range(embed_len // 2, embed_len))
|
|
|
534 |
else:
|
535 |
steps_range = (range(embed_len), range(embed_len))
|
536 |
mutiplier = 1
|
|
|
537 |
for class_iter, class_id in enumerate(class_pairs):
|
|
|
538 |
subset_len = len(img_subsets[class_id])
|
|
|
|
|
|
|
|
|
|
|
539 |
group_map = (
|
540 |
list(steps_range[class_iter]) * mutiplier * (subset_len // embed_len + 1)
|
541 |
)
|
542 |
rng.shuffle(
|
543 |
group_map
|
544 |
+
)
|
|
|
545 |
iter_indices = class_iterables[class_id].pop()
|
|
|
546 |
for image_id in iter_indices:
|
547 |
class_ds = img_subsets[class_id]
|
548 |
interpolate_step = group_map[image_id]
|
|
|
555 |
input_prompts_embed = embed_pairs_list[interpolate_step]
|
556 |
else:
|
557 |
input_prompts_embed = None
|
|
|
558 |
trace_dict["class_pairs"].append(class_pairs)
|
559 |
trace_dict["class_id"].append(class_id)
|
560 |
trace_dict["image_id"].append(image_id)
|