Chaitanya-02's picture
Update app.py
cbbd8c5 verified
raw
history blame
10.1 kB
import random
import gradio as gr
import numpy as np
import spaces
import torch
import torchvision.transforms as transforms
from PIL import Image
from torchmetrics.functional.image import structural_similarity_index_measure as ssim
from transformers import CLIPModel, CLIPProcessor
import sourcecode
device = "cuda" if torch.cuda.is_available() else "cpu"
model_path = "czl/stable-diffusion-v1-5"
clip_model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14").to(device)
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
if torch.cuda.is_available():
torch.cuda.max_memory_allocated(device=device)
pipe = sourcecode.pipe_img(
model_path=model_path,
device=device,
use_torchcompile=False,
)
else:
pipe = sourcecode.pipe_img(
model_path=model_path,
device=device,
apply_optimization=False,
)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU
def infer(
input_image,
prompt1,
prompt2,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
interpolation_step,
num_inference_steps,
num_interpolation_steps,
):
device = "cuda" if torch.cuda.is_available() else "cpu"
try:
assert num_interpolation_steps % 2 == 0
except AssertionError:
raise ValueError("num_interpolation_steps must be an even number")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
prompts = [prompt1, prompt2]
generator = torch.Generator().manual_seed(seed)
sample_mid_interpolation = num_interpolation_steps
remove_n_middle = 0
interpolated_prompt_embeds, prompt_metadata = sourcecode.interpolatePrompts(
prompts,
pipe,
num_interpolation_steps,
sample_mid_interpolation,
remove_n_middle=remove_n_middle,
device=device,
)
negative_prompts = [negative_prompt, negative_prompt]
if negative_prompts != ["", ""]:
interpolated_negative_prompts_embeds, _ = sourcecode.interpolatePrompts(
negative_prompts,
pipe,
num_interpolation_steps,
sample_mid_interpolation,
remove_n_middle=remove_n_middle,
device=device,
)
else:
interpolated_negative_prompts_embeds, _ = [None] * len(
interpolated_prompt_embeds
), None
latents = torch.randn(
(1, pipe.unet.config.in_channels, height // 8, width // 8),
generator=generator,
).to(device)
embed_pairs = zip(interpolated_prompt_embeds, interpolated_negative_prompts_embeds)
embed_pairs_list = list(embed_pairs)
# offset step by -1
prompt_embeds, negative_prompt_embeds = embed_pairs_list[interpolation_step - 1]
preprocess_input = transforms.Compose(
[transforms.ToTensor(), transforms.Resize((512, 512))]
)
input_img_tensor = preprocess_input(input_image).unsqueeze(0)
if negative_prompt_embeds is not None:
npe = negative_prompt_embeds[None, ...]
else:
npe = None
images_list = pipe(
height=height,
width=width,
num_images_per_prompt=1,
prompt_embeds=prompt_embeds[None, ...],
negative_prompt_embeds=npe,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=generator,
latents=latents,
image=input_img_tensor,
)
if images_list["nsfw_content_detected"][0]:
image = Image.open("samples/unsafe.jpeg")
return image, seed, "Unsafe content detected", "Unsafe content detected"
else:
image = images_list.images[0]
pred_image = transforms.ToTensor()(image).unsqueeze(0)
ssim_score = ssim(pred_image, input_img_tensor).item()
real_inputs = clip_processor(
text=prompts, padding=True, images=input_image, return_tensors="pt"
).to(device)
real_output = clip_model(**real_inputs)
synth_inputs = clip_processor(
text=prompts, padding=True, images=image, return_tensors="pt"
).to(device)
synth_output = clip_model(**synth_inputs)
cos_sim = torch.nn.CosineSimilarity(dim=1)
cosine_sim = (
cos_sim(real_output.image_embeds, synth_output.image_embeds)
.detach()
.cpu()
.numpy()
.squeeze()
* 100
)
return image, seed, round(ssim_score, 4), round(cosine_sim, 2)
def update_steps(total_steps, interpolation_step):
return gr.update(maximum=total_steps)
def update_format(image_format):
return gr.update(format=image_format)
if torch.cuda.is_available():
power_device = "GPU"
else:
power_device = "CPU"
with gr.Blocks(title="Generative Date Augmentation Demo") as demo:
gr.Markdown(
)
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Image to Augment")
with gr.Row():
prompt1 = gr.Text(
label="Prompt for the image to synthesize. (Actual class)",
show_label=True,
max_lines=1,
placeholder="Enter Prompt for the image to synthesize. (Actual class)",
container=False,
)
with gr.Row():
prompt2 = gr.Text(
label="Prompt to augment against. (Confusing class)",
show_label=True,
max_lines=1,
placeholder="Enter Prompt to augment against. (Confusing class)",
container=False,
)
with gr.Row():
num_interpolation_steps = gr.Slider(
label="Total Interpolation Steps",
minimum=2,
maximum=128,
step=2,
value=16,
)
interpolation_step = gr.Slider(
label="Sample Interpolation Step",
minimum=1,
maximum=16,
step=1,
value=8,
)
num_interpolation_steps.change(
fn=update_steps,
inputs=[num_interpolation_steps, interpolation_step],
outputs=[interpolation_step],
)
run_button = gr.Button("Run", scale=0)
with gr.Accordion("Advanced Settings", open=True):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
gr.Markdown("Negative Prompt: ")
with gr.Row():
negative_prompt = gr.Text(
label="Negative Prompt",
show_label=True,
max_lines=1,
value="deformed,drawings,disfigured,blurry image,distorted,cartoon",
container=False,
)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=8.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=80,
step=1,
value=25,
)
with gr.Row():
image_type = gr.Radio(
choices=[
"webp",
"png",
"jpeg",
],
label="Download Image Format",
value="jpeg",
)
with gr.Column():
result = gr.Image(label="Result", show_label=False, format="jpeg")
image_type.change(
fn=update_format,
inputs=[image_type],
outputs=[result],
)
gr.Markdown(
"""
Metadata:
"""
)
with gr.Row():
show_seed = gr.Label(label="Seed:", value="Randomized seed")
ssim_score = gr.Label(
label="SSIM Score:", value="Generate to see score"
)
cos_sim = gr.Label(label="CLIP Score:", value="Generate to see score")
run_button.click(
fn=infer,
inputs=[
input_image,
prompt1,
prompt2,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
interpolation_step,
num_inference_steps,
num_interpolation_steps,
],
outputs=[result, show_seed, ssim_score, cos_sim],
)
demo.queue().launch(show_error=True)