dify / api /tasks /enable_segments_to_index_task.py
CatPtain's picture
Upload 697 files
20f348c verified
import datetime
import logging
import time
import click
from celery import shared_task # type: ignore
from core.rag.index_processor.constant.index_type import IndexType
from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
from core.rag.models.document import ChildDocument, Document
from extensions.ext_database import db
from extensions.ext_redis import redis_client
from models.dataset import Dataset, DocumentSegment
from models.dataset import Document as DatasetDocument
@shared_task(queue="dataset")
def enable_segments_to_index_task(segment_ids: list, dataset_id: str, document_id: str):
"""
Async enable segments to index
:param segment_ids:
Usage: enable_segments_to_index_task.delay(segment_ids)
"""
start_at = time.perf_counter()
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
if not dataset:
logging.info(click.style("Dataset {} not found, pass.".format(dataset_id), fg="cyan"))
return
dataset_document = db.session.query(DatasetDocument).filter(DatasetDocument.id == document_id).first()
if not dataset_document:
logging.info(click.style("Document {} not found, pass.".format(document_id), fg="cyan"))
return
if not dataset_document.enabled or dataset_document.archived or dataset_document.indexing_status != "completed":
logging.info(click.style("Document {} status is invalid, pass.".format(document_id), fg="cyan"))
return
# sync index processor
index_processor = IndexProcessorFactory(dataset_document.doc_form).init_index_processor()
segments = (
db.session.query(DocumentSegment)
.filter(
DocumentSegment.id.in_(segment_ids),
DocumentSegment.dataset_id == dataset_id,
DocumentSegment.document_id == document_id,
)
.all()
)
if not segments:
return
try:
documents = []
for segment in segments:
document = Document(
page_content=segment.content,
metadata={
"doc_id": segment.index_node_id,
"doc_hash": segment.index_node_hash,
"document_id": document_id,
"dataset_id": dataset_id,
},
)
if dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX:
child_chunks = segment.child_chunks
if child_chunks:
child_documents = []
for child_chunk in child_chunks:
child_document = ChildDocument(
page_content=child_chunk.content,
metadata={
"doc_id": child_chunk.index_node_id,
"doc_hash": child_chunk.index_node_hash,
"document_id": document_id,
"dataset_id": dataset_id,
},
)
child_documents.append(child_document)
document.children = child_documents
documents.append(document)
# save vector index
index_processor.load(dataset, documents)
end_at = time.perf_counter()
logging.info(click.style("Segments enabled to index latency: {}".format(end_at - start_at), fg="green"))
except Exception as e:
logging.exception("enable segments to index failed")
# update segment error msg
db.session.query(DocumentSegment).filter(
DocumentSegment.id.in_(segment_ids),
DocumentSegment.dataset_id == dataset_id,
DocumentSegment.document_id == document_id,
).update(
{
"error": str(e),
"status": "error",
"disabled_at": datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
"enabled": False,
}
)
db.session.commit()
finally:
for segment in segments:
indexing_cache_key = "segment_{}_indexing".format(segment.id)
redis_client.delete(indexing_cache_key)