File size: 9,430 Bytes
20f348c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
from typing import Optional

from core.model_manager import ModelInstance, ModelManager
from core.model_runtime.entities.model_entities import ModelType
from core.rag.datasource.keyword.keyword_factory import Keyword
from core.rag.datasource.vdb.vector_factory import Vector
from core.rag.index_processor.constant.index_type import IndexType
from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
from core.rag.models.document import Document
from extensions.ext_database import db
from models.dataset import ChildChunk, Dataset, DatasetProcessRule, DocumentSegment
from models.dataset import Document as DatasetDocument
from services.entities.knowledge_entities.knowledge_entities import ParentMode


class VectorService:
    @classmethod
    def create_segments_vector(
        cls, keywords_list: Optional[list[list[str]]], segments: list[DocumentSegment], dataset: Dataset, doc_form: str
    ):
        documents = []

        for segment in segments:
            if doc_form == IndexType.PARENT_CHILD_INDEX:
                document = DatasetDocument.query.filter_by(id=segment.document_id).first()
                # get the process rule
                processing_rule = (
                    db.session.query(DatasetProcessRule)
                    .filter(DatasetProcessRule.id == document.dataset_process_rule_id)
                    .first()
                )
                if not processing_rule:
                    raise ValueError("No processing rule found.")
                # get embedding model instance
                if dataset.indexing_technique == "high_quality":
                    # check embedding model setting
                    model_manager = ModelManager()

                    if dataset.embedding_model_provider:
                        embedding_model_instance = model_manager.get_model_instance(
                            tenant_id=dataset.tenant_id,
                            provider=dataset.embedding_model_provider,
                            model_type=ModelType.TEXT_EMBEDDING,
                            model=dataset.embedding_model,
                        )
                    else:
                        embedding_model_instance = model_manager.get_default_model_instance(
                            tenant_id=dataset.tenant_id,
                            model_type=ModelType.TEXT_EMBEDDING,
                        )
                else:
                    raise ValueError("The knowledge base index technique is not high quality!")
                cls.generate_child_chunks(segment, document, dataset, embedding_model_instance, processing_rule, False)
            else:
                document = Document(
                    page_content=segment.content,
                    metadata={
                        "doc_id": segment.index_node_id,
                        "doc_hash": segment.index_node_hash,
                        "document_id": segment.document_id,
                        "dataset_id": segment.dataset_id,
                    },
                )
                documents.append(document)
        if len(documents) > 0:
            index_processor = IndexProcessorFactory(doc_form).init_index_processor()
            index_processor.load(dataset, documents, with_keywords=True, keywords_list=keywords_list)

    @classmethod
    def update_segment_vector(cls, keywords: Optional[list[str]], segment: DocumentSegment, dataset: Dataset):
        # update segment index task

        # format new index
        document = Document(
            page_content=segment.content,
            metadata={
                "doc_id": segment.index_node_id,
                "doc_hash": segment.index_node_hash,
                "document_id": segment.document_id,
                "dataset_id": segment.dataset_id,
            },
        )
        if dataset.indexing_technique == "high_quality":
            # update vector index
            vector = Vector(dataset=dataset)
            vector.delete_by_ids([segment.index_node_id])
            vector.add_texts([document], duplicate_check=True)

        # update keyword index
        keyword = Keyword(dataset)
        keyword.delete_by_ids([segment.index_node_id])

        # save keyword index
        if keywords and len(keywords) > 0:
            keyword.add_texts([document], keywords_list=[keywords])
        else:
            keyword.add_texts([document])

    @classmethod
    def generate_child_chunks(
        cls,
        segment: DocumentSegment,
        dataset_document: DatasetDocument,
        dataset: Dataset,
        embedding_model_instance: ModelInstance,
        processing_rule: DatasetProcessRule,
        regenerate: bool = False,
    ):
        index_processor = IndexProcessorFactory(dataset.doc_form).init_index_processor()
        if regenerate:
            # delete child chunks
            index_processor.clean(dataset, [segment.index_node_id], with_keywords=True, delete_child_chunks=True)

        # generate child chunks
        document = Document(
            page_content=segment.content,
            metadata={
                "doc_id": segment.index_node_id,
                "doc_hash": segment.index_node_hash,
                "document_id": segment.document_id,
                "dataset_id": segment.dataset_id,
            },
        )
        # use full doc mode to generate segment's child chunk
        processing_rule_dict = processing_rule.to_dict()
        processing_rule_dict["rules"]["parent_mode"] = ParentMode.FULL_DOC.value
        documents = index_processor.transform(
            [document],
            embedding_model_instance=embedding_model_instance,
            process_rule=processing_rule_dict,
            tenant_id=dataset.tenant_id,
            doc_language=dataset_document.doc_language,
        )
        # save child chunks
        if documents and documents[0].children:
            index_processor.load(dataset, documents)

            for position, child_chunk in enumerate(documents[0].children, start=1):
                child_segment = ChildChunk(
                    tenant_id=dataset.tenant_id,
                    dataset_id=dataset.id,
                    document_id=dataset_document.id,
                    segment_id=segment.id,
                    position=position,
                    index_node_id=child_chunk.metadata["doc_id"],
                    index_node_hash=child_chunk.metadata["doc_hash"],
                    content=child_chunk.page_content,
                    word_count=len(child_chunk.page_content),
                    type="automatic",
                    created_by=dataset_document.created_by,
                )
                db.session.add(child_segment)
        db.session.commit()

    @classmethod
    def create_child_chunk_vector(cls, child_segment: ChildChunk, dataset: Dataset):
        child_document = Document(
            page_content=child_segment.content,
            metadata={
                "doc_id": child_segment.index_node_id,
                "doc_hash": child_segment.index_node_hash,
                "document_id": child_segment.document_id,
                "dataset_id": child_segment.dataset_id,
            },
        )
        if dataset.indexing_technique == "high_quality":
            # save vector index
            vector = Vector(dataset=dataset)
            vector.add_texts([child_document], duplicate_check=True)

    @classmethod
    def update_child_chunk_vector(
        cls,
        new_child_chunks: list[ChildChunk],
        update_child_chunks: list[ChildChunk],
        delete_child_chunks: list[ChildChunk],
        dataset: Dataset,
    ):
        documents = []
        delete_node_ids = []
        for new_child_chunk in new_child_chunks:
            new_child_document = Document(
                page_content=new_child_chunk.content,
                metadata={
                    "doc_id": new_child_chunk.index_node_id,
                    "doc_hash": new_child_chunk.index_node_hash,
                    "document_id": new_child_chunk.document_id,
                    "dataset_id": new_child_chunk.dataset_id,
                },
            )
            documents.append(new_child_document)
        for update_child_chunk in update_child_chunks:
            child_document = Document(
                page_content=update_child_chunk.content,
                metadata={
                    "doc_id": update_child_chunk.index_node_id,
                    "doc_hash": update_child_chunk.index_node_hash,
                    "document_id": update_child_chunk.document_id,
                    "dataset_id": update_child_chunk.dataset_id,
                },
            )
            documents.append(child_document)
            delete_node_ids.append(update_child_chunk.index_node_id)
        for delete_child_chunk in delete_child_chunks:
            delete_node_ids.append(delete_child_chunk.index_node_id)
        if dataset.indexing_technique == "high_quality":
            # update vector index
            vector = Vector(dataset=dataset)
            if delete_node_ids:
                vector.delete_by_ids(delete_node_ids)
            if documents:
                vector.add_texts(documents, duplicate_check=True)

    @classmethod
    def delete_child_chunk_vector(cls, child_chunk: ChildChunk, dataset: Dataset):
        vector = Vector(dataset=dataset)
        vector.delete_by_ids([child_chunk.index_node_id])