File size: 3,065 Bytes
20f348c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
from enum import Enum
from typing import Literal, Optional

from pydantic import BaseModel


class SegmentUpdateEntity(BaseModel):
    content: str
    answer: Optional[str] = None
    keywords: Optional[list[str]] = None
    enabled: Optional[bool] = None


class ParentMode(str, Enum):
    FULL_DOC = "full-doc"
    PARAGRAPH = "paragraph"


class NotionIcon(BaseModel):
    type: str
    url: Optional[str] = None
    emoji: Optional[str] = None


class NotionPage(BaseModel):
    page_id: str
    page_name: str
    page_icon: Optional[NotionIcon] = None
    type: str


class NotionInfo(BaseModel):
    workspace_id: str
    pages: list[NotionPage]


class WebsiteInfo(BaseModel):
    provider: str
    job_id: str
    urls: list[str]
    only_main_content: bool = True


class FileInfo(BaseModel):
    file_ids: list[str]


class InfoList(BaseModel):
    data_source_type: Literal["upload_file", "notion_import", "website_crawl"]
    notion_info_list: Optional[list[NotionInfo]] = None
    file_info_list: Optional[FileInfo] = None
    website_info_list: Optional[WebsiteInfo] = None


class DataSource(BaseModel):
    info_list: InfoList


class PreProcessingRule(BaseModel):
    id: str
    enabled: bool


class Segmentation(BaseModel):
    separator: str = "\n"
    max_tokens: int
    chunk_overlap: int = 0


class Rule(BaseModel):
    pre_processing_rules: Optional[list[PreProcessingRule]] = None
    segmentation: Optional[Segmentation] = None
    parent_mode: Optional[Literal["full-doc", "paragraph"]] = None
    subchunk_segmentation: Optional[Segmentation] = None


class ProcessRule(BaseModel):
    mode: Literal["automatic", "custom", "hierarchical"]
    rules: Optional[Rule] = None


class RerankingModel(BaseModel):
    reranking_provider_name: Optional[str] = None
    reranking_model_name: Optional[str] = None


class RetrievalModel(BaseModel):
    search_method: Literal["hybrid_search", "semantic_search", "full_text_search"]
    reranking_enable: bool
    reranking_model: Optional[RerankingModel] = None
    top_k: int
    score_threshold_enabled: bool
    score_threshold: Optional[float] = None


class MetaDataConfig(BaseModel):
    doc_type: str
    doc_metadata: dict


class KnowledgeConfig(BaseModel):
    original_document_id: Optional[str] = None
    duplicate: bool = True
    indexing_technique: Literal["high_quality", "economy"]
    data_source: Optional[DataSource] = None
    process_rule: Optional[ProcessRule] = None
    retrieval_model: Optional[RetrievalModel] = None
    doc_form: str = "text_model"
    doc_language: str = "English"
    embedding_model: Optional[str] = None
    embedding_model_provider: Optional[str] = None
    name: Optional[str] = None
    metadata: Optional[MetaDataConfig] = None


class SegmentUpdateArgs(BaseModel):
    content: Optional[str] = None
    answer: Optional[str] = None
    keywords: Optional[list[str]] = None
    regenerate_child_chunks: bool = False
    enabled: Optional[bool] = None


class ChildChunkUpdateArgs(BaseModel):
    id: Optional[str] = None
    content: str