File size: 3,065 Bytes
20f348c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
from enum import Enum
from typing import Literal, Optional
from pydantic import BaseModel
class SegmentUpdateEntity(BaseModel):
content: str
answer: Optional[str] = None
keywords: Optional[list[str]] = None
enabled: Optional[bool] = None
class ParentMode(str, Enum):
FULL_DOC = "full-doc"
PARAGRAPH = "paragraph"
class NotionIcon(BaseModel):
type: str
url: Optional[str] = None
emoji: Optional[str] = None
class NotionPage(BaseModel):
page_id: str
page_name: str
page_icon: Optional[NotionIcon] = None
type: str
class NotionInfo(BaseModel):
workspace_id: str
pages: list[NotionPage]
class WebsiteInfo(BaseModel):
provider: str
job_id: str
urls: list[str]
only_main_content: bool = True
class FileInfo(BaseModel):
file_ids: list[str]
class InfoList(BaseModel):
data_source_type: Literal["upload_file", "notion_import", "website_crawl"]
notion_info_list: Optional[list[NotionInfo]] = None
file_info_list: Optional[FileInfo] = None
website_info_list: Optional[WebsiteInfo] = None
class DataSource(BaseModel):
info_list: InfoList
class PreProcessingRule(BaseModel):
id: str
enabled: bool
class Segmentation(BaseModel):
separator: str = "\n"
max_tokens: int
chunk_overlap: int = 0
class Rule(BaseModel):
pre_processing_rules: Optional[list[PreProcessingRule]] = None
segmentation: Optional[Segmentation] = None
parent_mode: Optional[Literal["full-doc", "paragraph"]] = None
subchunk_segmentation: Optional[Segmentation] = None
class ProcessRule(BaseModel):
mode: Literal["automatic", "custom", "hierarchical"]
rules: Optional[Rule] = None
class RerankingModel(BaseModel):
reranking_provider_name: Optional[str] = None
reranking_model_name: Optional[str] = None
class RetrievalModel(BaseModel):
search_method: Literal["hybrid_search", "semantic_search", "full_text_search"]
reranking_enable: bool
reranking_model: Optional[RerankingModel] = None
top_k: int
score_threshold_enabled: bool
score_threshold: Optional[float] = None
class MetaDataConfig(BaseModel):
doc_type: str
doc_metadata: dict
class KnowledgeConfig(BaseModel):
original_document_id: Optional[str] = None
duplicate: bool = True
indexing_technique: Literal["high_quality", "economy"]
data_source: Optional[DataSource] = None
process_rule: Optional[ProcessRule] = None
retrieval_model: Optional[RetrievalModel] = None
doc_form: str = "text_model"
doc_language: str = "English"
embedding_model: Optional[str] = None
embedding_model_provider: Optional[str] = None
name: Optional[str] = None
metadata: Optional[MetaDataConfig] = None
class SegmentUpdateArgs(BaseModel):
content: Optional[str] = None
answer: Optional[str] = None
keywords: Optional[list[str]] = None
regenerate_child_chunks: bool = False
enabled: Optional[bool] = None
class ChildChunkUpdateArgs(BaseModel):
id: Optional[str] = None
content: str
|