File size: 99,831 Bytes
20f348c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
import datetime
import json
import logging
import random
import time
import uuid
from collections import Counter
from typing import Any, Optional

from flask_login import current_user  # type: ignore
from sqlalchemy import func
from werkzeug.exceptions import NotFound

from configs import dify_config
from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
from core.model_manager import ModelManager
from core.model_runtime.entities.model_entities import ModelType
from core.rag.index_processor.constant.index_type import IndexType
from core.rag.retrieval.retrieval_methods import RetrievalMethod
from events.dataset_event import dataset_was_deleted
from events.document_event import document_was_deleted
from extensions.ext_database import db
from extensions.ext_redis import redis_client
from libs import helper
from models.account import Account, TenantAccountRole
from models.dataset import (
    AppDatasetJoin,
    ChildChunk,
    Dataset,
    DatasetAutoDisableLog,
    DatasetCollectionBinding,
    DatasetPermission,
    DatasetPermissionEnum,
    DatasetProcessRule,
    DatasetQuery,
    Document,
    DocumentSegment,
    ExternalKnowledgeBindings,
)
from models.model import UploadFile
from models.source import DataSourceOauthBinding
from services.entities.knowledge_entities.knowledge_entities import (
    ChildChunkUpdateArgs,
    KnowledgeConfig,
    MetaDataConfig,
    RerankingModel,
    RetrievalModel,
    SegmentUpdateArgs,
)
from services.errors.account import InvalidActionError, NoPermissionError
from services.errors.chunk import ChildChunkDeleteIndexError, ChildChunkIndexingError
from services.errors.dataset import DatasetNameDuplicateError
from services.errors.document import DocumentIndexingError
from services.errors.file import FileNotExistsError
from services.external_knowledge_service import ExternalDatasetService
from services.feature_service import FeatureModel, FeatureService
from services.tag_service import TagService
from services.vector_service import VectorService
from tasks.batch_clean_document_task import batch_clean_document_task
from tasks.clean_notion_document_task import clean_notion_document_task
from tasks.deal_dataset_vector_index_task import deal_dataset_vector_index_task
from tasks.delete_segment_from_index_task import delete_segment_from_index_task
from tasks.disable_segment_from_index_task import disable_segment_from_index_task
from tasks.disable_segments_from_index_task import disable_segments_from_index_task
from tasks.document_indexing_task import document_indexing_task
from tasks.document_indexing_update_task import document_indexing_update_task
from tasks.duplicate_document_indexing_task import duplicate_document_indexing_task
from tasks.enable_segments_to_index_task import enable_segments_to_index_task
from tasks.recover_document_indexing_task import recover_document_indexing_task
from tasks.retry_document_indexing_task import retry_document_indexing_task
from tasks.sync_website_document_indexing_task import sync_website_document_indexing_task


class DatasetService:
    @staticmethod
    def get_datasets(page, per_page, tenant_id=None, user=None, search=None, tag_ids=None, include_all=False):
        query = Dataset.query.filter(Dataset.tenant_id == tenant_id).order_by(Dataset.created_at.desc())

        if user:
            # get permitted dataset ids
            dataset_permission = DatasetPermission.query.filter_by(account_id=user.id, tenant_id=tenant_id).all()
            permitted_dataset_ids = {dp.dataset_id for dp in dataset_permission} if dataset_permission else None

            if user.current_role == TenantAccountRole.DATASET_OPERATOR:
                # only show datasets that the user has permission to access
                if permitted_dataset_ids:
                    query = query.filter(Dataset.id.in_(permitted_dataset_ids))
                else:
                    return [], 0
            else:
                if user.current_role != TenantAccountRole.OWNER or not include_all:
                    # show all datasets that the user has permission to access
                    if permitted_dataset_ids:
                        query = query.filter(
                            db.or_(
                                Dataset.permission == DatasetPermissionEnum.ALL_TEAM,
                                db.and_(
                                    Dataset.permission == DatasetPermissionEnum.ONLY_ME, Dataset.created_by == user.id
                                ),
                                db.and_(
                                    Dataset.permission == DatasetPermissionEnum.PARTIAL_TEAM,
                                    Dataset.id.in_(permitted_dataset_ids),
                                ),
                            )
                        )
                    else:
                        query = query.filter(
                            db.or_(
                                Dataset.permission == DatasetPermissionEnum.ALL_TEAM,
                                db.and_(
                                    Dataset.permission == DatasetPermissionEnum.ONLY_ME, Dataset.created_by == user.id
                                ),
                            )
                        )
        else:
            # if no user, only show datasets that are shared with all team members
            query = query.filter(Dataset.permission == DatasetPermissionEnum.ALL_TEAM)

        if search:
            query = query.filter(Dataset.name.ilike(f"%{search}%"))

        if tag_ids:
            target_ids = TagService.get_target_ids_by_tag_ids("knowledge", tenant_id, tag_ids)
            if target_ids:
                query = query.filter(Dataset.id.in_(target_ids))
            else:
                return [], 0

        datasets = query.paginate(page=page, per_page=per_page, max_per_page=100, error_out=False)

        return datasets.items, datasets.total

    @staticmethod
    def get_process_rules(dataset_id):
        # get the latest process rule
        dataset_process_rule = (
            db.session.query(DatasetProcessRule)
            .filter(DatasetProcessRule.dataset_id == dataset_id)
            .order_by(DatasetProcessRule.created_at.desc())
            .limit(1)
            .one_or_none()
        )
        if dataset_process_rule:
            mode = dataset_process_rule.mode
            rules = dataset_process_rule.rules_dict
        else:
            mode = DocumentService.DEFAULT_RULES["mode"]
            rules = DocumentService.DEFAULT_RULES["rules"]
        return {"mode": mode, "rules": rules}

    @staticmethod
    def get_datasets_by_ids(ids, tenant_id):
        datasets = Dataset.query.filter(Dataset.id.in_(ids), Dataset.tenant_id == tenant_id).paginate(
            page=1, per_page=len(ids), max_per_page=len(ids), error_out=False
        )
        return datasets.items, datasets.total

    @staticmethod
    def create_empty_dataset(
        tenant_id: str,
        name: str,
        description: Optional[str],
        indexing_technique: Optional[str],
        account: Account,
        permission: Optional[str] = None,
        provider: str = "vendor",
        external_knowledge_api_id: Optional[str] = None,
        external_knowledge_id: Optional[str] = None,
    ):
        # check if dataset name already exists
        if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first():
            raise DatasetNameDuplicateError(f"Dataset with name {name} already exists.")
        embedding_model = None
        if indexing_technique == "high_quality":
            model_manager = ModelManager()
            embedding_model = model_manager.get_default_model_instance(
                tenant_id=tenant_id, model_type=ModelType.TEXT_EMBEDDING
            )
        dataset = Dataset(name=name, indexing_technique=indexing_technique)
        # dataset = Dataset(name=name, provider=provider, config=config)
        dataset.description = description
        dataset.created_by = account.id
        dataset.updated_by = account.id
        dataset.tenant_id = tenant_id
        dataset.embedding_model_provider = embedding_model.provider if embedding_model else None
        dataset.embedding_model = embedding_model.model if embedding_model else None
        dataset.permission = permission or DatasetPermissionEnum.ONLY_ME
        dataset.provider = provider
        db.session.add(dataset)
        db.session.flush()

        if provider == "external" and external_knowledge_api_id:
            external_knowledge_api = ExternalDatasetService.get_external_knowledge_api(external_knowledge_api_id)
            if not external_knowledge_api:
                raise ValueError("External API template not found.")
            external_knowledge_binding = ExternalKnowledgeBindings(
                tenant_id=tenant_id,
                dataset_id=dataset.id,
                external_knowledge_api_id=external_knowledge_api_id,
                external_knowledge_id=external_knowledge_id,
                created_by=account.id,
            )
            db.session.add(external_knowledge_binding)

        db.session.commit()
        return dataset

    @staticmethod
    def get_dataset(dataset_id) -> Optional[Dataset]:
        dataset: Optional[Dataset] = Dataset.query.filter_by(id=dataset_id).first()
        return dataset

    @staticmethod
    def check_dataset_model_setting(dataset):
        if dataset.indexing_technique == "high_quality":
            try:
                model_manager = ModelManager()
                model_manager.get_model_instance(
                    tenant_id=dataset.tenant_id,
                    provider=dataset.embedding_model_provider,
                    model_type=ModelType.TEXT_EMBEDDING,
                    model=dataset.embedding_model,
                )
            except LLMBadRequestError:
                raise ValueError(
                    "No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
                )
            except ProviderTokenNotInitError as ex:
                raise ValueError(f"The dataset in unavailable, due to: {ex.description}")

    @staticmethod
    def check_embedding_model_setting(tenant_id: str, embedding_model_provider: str, embedding_model: str):
        try:
            model_manager = ModelManager()
            model_manager.get_model_instance(
                tenant_id=tenant_id,
                provider=embedding_model_provider,
                model_type=ModelType.TEXT_EMBEDDING,
                model=embedding_model,
            )
        except LLMBadRequestError:
            raise ValueError(
                "No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
            )
        except ProviderTokenNotInitError as ex:
            raise ValueError(f"The dataset in unavailable, due to: {ex.description}")

    @staticmethod
    def update_dataset(dataset_id, data, user):
        dataset = DatasetService.get_dataset(dataset_id)
        if not dataset:
            raise ValueError("Dataset not found")

        DatasetService.check_dataset_permission(dataset, user)
        if dataset.provider == "external":
            external_retrieval_model = data.get("external_retrieval_model", None)
            if external_retrieval_model:
                dataset.retrieval_model = external_retrieval_model
            dataset.name = data.get("name", dataset.name)
            dataset.description = data.get("description", "")
            permission = data.get("permission")
            if permission:
                dataset.permission = permission
            external_knowledge_id = data.get("external_knowledge_id", None)
            db.session.add(dataset)
            if not external_knowledge_id:
                raise ValueError("External knowledge id is required.")
            external_knowledge_api_id = data.get("external_knowledge_api_id", None)
            if not external_knowledge_api_id:
                raise ValueError("External knowledge api id is required.")
            external_knowledge_binding = ExternalKnowledgeBindings.query.filter_by(dataset_id=dataset_id).first()
            if (
                external_knowledge_binding.external_knowledge_id != external_knowledge_id
                or external_knowledge_binding.external_knowledge_api_id != external_knowledge_api_id
            ):
                external_knowledge_binding.external_knowledge_id = external_knowledge_id
                external_knowledge_binding.external_knowledge_api_id = external_knowledge_api_id
                db.session.add(external_knowledge_binding)
            db.session.commit()
        else:
            data.pop("partial_member_list", None)
            data.pop("external_knowledge_api_id", None)
            data.pop("external_knowledge_id", None)
            data.pop("external_retrieval_model", None)
            filtered_data = {k: v for k, v in data.items() if v is not None or k == "description"}
            action = None
            if dataset.indexing_technique != data["indexing_technique"]:
                # if update indexing_technique
                if data["indexing_technique"] == "economy":
                    action = "remove"
                    filtered_data["embedding_model"] = None
                    filtered_data["embedding_model_provider"] = None
                    filtered_data["collection_binding_id"] = None
                elif data["indexing_technique"] == "high_quality":
                    action = "add"
                    # get embedding model setting
                    try:
                        model_manager = ModelManager()
                        embedding_model = model_manager.get_model_instance(
                            tenant_id=current_user.current_tenant_id,
                            provider=data["embedding_model_provider"],
                            model_type=ModelType.TEXT_EMBEDDING,
                            model=data["embedding_model"],
                        )
                        filtered_data["embedding_model"] = embedding_model.model
                        filtered_data["embedding_model_provider"] = embedding_model.provider
                        dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
                            embedding_model.provider, embedding_model.model
                        )
                        filtered_data["collection_binding_id"] = dataset_collection_binding.id
                    except LLMBadRequestError:
                        raise ValueError(
                            "No Embedding Model available. Please configure a valid provider "
                            "in the Settings -> Model Provider."
                        )
                    except ProviderTokenNotInitError as ex:
                        raise ValueError(ex.description)
            else:
                if (
                    data["embedding_model_provider"] != dataset.embedding_model_provider
                    or data["embedding_model"] != dataset.embedding_model
                ):
                    action = "update"
                    try:
                        model_manager = ModelManager()
                        embedding_model = model_manager.get_model_instance(
                            tenant_id=current_user.current_tenant_id,
                            provider=data["embedding_model_provider"],
                            model_type=ModelType.TEXT_EMBEDDING,
                            model=data["embedding_model"],
                        )
                        filtered_data["embedding_model"] = embedding_model.model
                        filtered_data["embedding_model_provider"] = embedding_model.provider
                        dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
                            embedding_model.provider, embedding_model.model
                        )
                        filtered_data["collection_binding_id"] = dataset_collection_binding.id
                    except LLMBadRequestError:
                        raise ValueError(
                            "No Embedding Model available. Please configure a valid provider "
                            "in the Settings -> Model Provider."
                        )
                    except ProviderTokenNotInitError as ex:
                        raise ValueError(ex.description)

            filtered_data["updated_by"] = user.id
            filtered_data["updated_at"] = datetime.datetime.now()

            # update Retrieval model
            filtered_data["retrieval_model"] = data["retrieval_model"]

            dataset.query.filter_by(id=dataset_id).update(filtered_data)

            db.session.commit()
            if action:
                deal_dataset_vector_index_task.delay(dataset_id, action)
        return dataset

    @staticmethod
    def delete_dataset(dataset_id, user):
        dataset = DatasetService.get_dataset(dataset_id)

        if dataset is None:
            return False

        DatasetService.check_dataset_permission(dataset, user)

        dataset_was_deleted.send(dataset)

        db.session.delete(dataset)
        db.session.commit()
        return True

    @staticmethod
    def dataset_use_check(dataset_id) -> bool:
        count = AppDatasetJoin.query.filter_by(dataset_id=dataset_id).count()
        if count > 0:
            return True
        return False

    @staticmethod
    def check_dataset_permission(dataset, user):
        if dataset.tenant_id != user.current_tenant_id:
            logging.debug(f"User {user.id} does not have permission to access dataset {dataset.id}")
            raise NoPermissionError("You do not have permission to access this dataset.")
        if user.current_role != TenantAccountRole.OWNER:
            if dataset.permission == DatasetPermissionEnum.ONLY_ME and dataset.created_by != user.id:
                logging.debug(f"User {user.id} does not have permission to access dataset {dataset.id}")
                raise NoPermissionError("You do not have permission to access this dataset.")
            if dataset.permission == "partial_members":
                user_permission = DatasetPermission.query.filter_by(dataset_id=dataset.id, account_id=user.id).first()
                if (
                    not user_permission
                    and dataset.tenant_id != user.current_tenant_id
                    and dataset.created_by != user.id
                ):
                    logging.debug(f"User {user.id} does not have permission to access dataset {dataset.id}")
                    raise NoPermissionError("You do not have permission to access this dataset.")

    @staticmethod
    def check_dataset_operator_permission(user: Optional[Account] = None, dataset: Optional[Dataset] = None):
        if not dataset:
            raise ValueError("Dataset not found")

        if not user:
            raise ValueError("User not found")

        if user.current_role != TenantAccountRole.OWNER:
            if dataset.permission == DatasetPermissionEnum.ONLY_ME:
                if dataset.created_by != user.id:
                    raise NoPermissionError("You do not have permission to access this dataset.")

            elif dataset.permission == DatasetPermissionEnum.PARTIAL_TEAM:
                if not any(
                    dp.dataset_id == dataset.id for dp in DatasetPermission.query.filter_by(account_id=user.id).all()
                ):
                    raise NoPermissionError("You do not have permission to access this dataset.")

    @staticmethod
    def get_dataset_queries(dataset_id: str, page: int, per_page: int):
        dataset_queries = (
            DatasetQuery.query.filter_by(dataset_id=dataset_id)
            .order_by(db.desc(DatasetQuery.created_at))
            .paginate(page=page, per_page=per_page, max_per_page=100, error_out=False)
        )
        return dataset_queries.items, dataset_queries.total

    @staticmethod
    def get_related_apps(dataset_id: str):
        return (
            AppDatasetJoin.query.filter(AppDatasetJoin.dataset_id == dataset_id)
            .order_by(db.desc(AppDatasetJoin.created_at))
            .all()
        )

    @staticmethod
    def get_dataset_auto_disable_logs(dataset_id: str) -> dict:
        features = FeatureService.get_features(current_user.current_tenant_id)
        if not features.billing.enabled or features.billing.subscription.plan == "sandbox":
            return {
                "document_ids": [],
                "count": 0,
            }
        # get recent 30 days auto disable logs
        start_date = datetime.datetime.now() - datetime.timedelta(days=30)
        dataset_auto_disable_logs = DatasetAutoDisableLog.query.filter(
            DatasetAutoDisableLog.dataset_id == dataset_id,
            DatasetAutoDisableLog.created_at >= start_date,
        ).all()
        if dataset_auto_disable_logs:
            return {
                "document_ids": [log.document_id for log in dataset_auto_disable_logs],
                "count": len(dataset_auto_disable_logs),
            }
        return {
            "document_ids": [],
            "count": 0,
        }


class DocumentService:
    DEFAULT_RULES: dict[str, Any] = {
        "mode": "custom",
        "rules": {
            "pre_processing_rules": [
                {"id": "remove_extra_spaces", "enabled": True},
                {"id": "remove_urls_emails", "enabled": False},
            ],
            "segmentation": {"delimiter": "\n", "max_tokens": 500, "chunk_overlap": 50},
        },
        "limits": {
            "indexing_max_segmentation_tokens_length": dify_config.INDEXING_MAX_SEGMENTATION_TOKENS_LENGTH,
        },
    }

    DOCUMENT_METADATA_SCHEMA: dict[str, Any] = {
        "book": {
            "title": str,
            "language": str,
            "author": str,
            "publisher": str,
            "publication_date": str,
            "isbn": str,
            "category": str,
        },
        "web_page": {
            "title": str,
            "url": str,
            "language": str,
            "publish_date": str,
            "author/publisher": str,
            "topic/keywords": str,
            "description": str,
        },
        "paper": {
            "title": str,
            "language": str,
            "author": str,
            "publish_date": str,
            "journal/conference_name": str,
            "volume/issue/page_numbers": str,
            "doi": str,
            "topic/keywords": str,
            "abstract": str,
        },
        "social_media_post": {
            "platform": str,
            "author/username": str,
            "publish_date": str,
            "post_url": str,
            "topic/tags": str,
        },
        "wikipedia_entry": {
            "title": str,
            "language": str,
            "web_page_url": str,
            "last_edit_date": str,
            "editor/contributor": str,
            "summary/introduction": str,
        },
        "personal_document": {
            "title": str,
            "author": str,
            "creation_date": str,
            "last_modified_date": str,
            "document_type": str,
            "tags/category": str,
        },
        "business_document": {
            "title": str,
            "author": str,
            "creation_date": str,
            "last_modified_date": str,
            "document_type": str,
            "department/team": str,
        },
        "im_chat_log": {
            "chat_platform": str,
            "chat_participants/group_name": str,
            "start_date": str,
            "end_date": str,
            "summary": str,
        },
        "synced_from_notion": {
            "title": str,
            "language": str,
            "author/creator": str,
            "creation_date": str,
            "last_modified_date": str,
            "notion_page_link": str,
            "category/tags": str,
            "description": str,
        },
        "synced_from_github": {
            "repository_name": str,
            "repository_description": str,
            "repository_owner/organization": str,
            "code_filename": str,
            "code_file_path": str,
            "programming_language": str,
            "github_link": str,
            "open_source_license": str,
            "commit_date": str,
            "commit_author": str,
        },
        "others": dict,
    }

    @staticmethod
    def get_document(dataset_id: str, document_id: Optional[str] = None) -> Optional[Document]:
        if document_id:
            document = (
                db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first()
            )
            return document
        else:
            return None

    @staticmethod
    def get_document_by_id(document_id: str) -> Optional[Document]:
        document = db.session.query(Document).filter(Document.id == document_id).first()

        return document

    @staticmethod
    def get_document_by_dataset_id(dataset_id: str) -> list[Document]:
        documents = db.session.query(Document).filter(Document.dataset_id == dataset_id, Document.enabled == True).all()

        return documents

    @staticmethod
    def get_error_documents_by_dataset_id(dataset_id: str) -> list[Document]:
        documents = (
            db.session.query(Document)
            .filter(Document.dataset_id == dataset_id, Document.indexing_status.in_(["error", "paused"]))
            .all()
        )
        return documents

    @staticmethod
    def get_batch_documents(dataset_id: str, batch: str) -> list[Document]:
        documents = (
            db.session.query(Document)
            .filter(
                Document.batch == batch,
                Document.dataset_id == dataset_id,
                Document.tenant_id == current_user.current_tenant_id,
            )
            .all()
        )

        return documents

    @staticmethod
    def get_document_file_detail(file_id: str):
        file_detail = db.session.query(UploadFile).filter(UploadFile.id == file_id).one_or_none()
        return file_detail

    @staticmethod
    def check_archived(document):
        if document.archived:
            return True
        else:
            return False

    @staticmethod
    def delete_document(document):
        # trigger document_was_deleted signal
        file_id = None
        if document.data_source_type == "upload_file":
            if document.data_source_info:
                data_source_info = document.data_source_info_dict
                if data_source_info and "upload_file_id" in data_source_info:
                    file_id = data_source_info["upload_file_id"]
        document_was_deleted.send(
            document.id, dataset_id=document.dataset_id, doc_form=document.doc_form, file_id=file_id
        )

        db.session.delete(document)
        db.session.commit()

    @staticmethod
    def delete_documents(dataset: Dataset, document_ids: list[str]):
        documents = db.session.query(Document).filter(Document.id.in_(document_ids)).all()
        file_ids = [
            document.data_source_info_dict["upload_file_id"]
            for document in documents
            if document.data_source_type == "upload_file"
        ]
        batch_clean_document_task.delay(document_ids, dataset.id, dataset.doc_form, file_ids)

        for document in documents:
            db.session.delete(document)
        db.session.commit()

    @staticmethod
    def rename_document(dataset_id: str, document_id: str, name: str) -> Document:
        dataset = DatasetService.get_dataset(dataset_id)
        if not dataset:
            raise ValueError("Dataset not found.")

        document = DocumentService.get_document(dataset_id, document_id)

        if not document:
            raise ValueError("Document not found.")

        if document.tenant_id != current_user.current_tenant_id:
            raise ValueError("No permission.")

        document.name = name

        db.session.add(document)
        db.session.commit()

        return document

    @staticmethod
    def pause_document(document):
        if document.indexing_status not in {"waiting", "parsing", "cleaning", "splitting", "indexing"}:
            raise DocumentIndexingError()
        # update document to be paused
        document.is_paused = True
        document.paused_by = current_user.id
        document.paused_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)

        db.session.add(document)
        db.session.commit()
        # set document paused flag
        indexing_cache_key = "document_{}_is_paused".format(document.id)
        redis_client.setnx(indexing_cache_key, "True")

    @staticmethod
    def recover_document(document):
        if not document.is_paused:
            raise DocumentIndexingError()
        # update document to be recover
        document.is_paused = False
        document.paused_by = None
        document.paused_at = None

        db.session.add(document)
        db.session.commit()
        # delete paused flag
        indexing_cache_key = "document_{}_is_paused".format(document.id)
        redis_client.delete(indexing_cache_key)
        # trigger async task
        recover_document_indexing_task.delay(document.dataset_id, document.id)

    @staticmethod
    def retry_document(dataset_id: str, documents: list[Document]):
        for document in documents:
            # add retry flag
            retry_indexing_cache_key = "document_{}_is_retried".format(document.id)
            cache_result = redis_client.get(retry_indexing_cache_key)
            if cache_result is not None:
                raise ValueError("Document is being retried, please try again later")
            # retry document indexing
            document.indexing_status = "waiting"
            db.session.add(document)
            db.session.commit()

            redis_client.setex(retry_indexing_cache_key, 600, 1)
        # trigger async task
        document_ids = [document.id for document in documents]
        retry_document_indexing_task.delay(dataset_id, document_ids)

    @staticmethod
    def sync_website_document(dataset_id: str, document: Document):
        # add sync flag
        sync_indexing_cache_key = "document_{}_is_sync".format(document.id)
        cache_result = redis_client.get(sync_indexing_cache_key)
        if cache_result is not None:
            raise ValueError("Document is being synced, please try again later")
        # sync document indexing
        document.indexing_status = "waiting"
        data_source_info = document.data_source_info_dict
        data_source_info["mode"] = "scrape"
        document.data_source_info = json.dumps(data_source_info, ensure_ascii=False)
        db.session.add(document)
        db.session.commit()

        redis_client.setex(sync_indexing_cache_key, 600, 1)

        sync_website_document_indexing_task.delay(dataset_id, document.id)

    @staticmethod
    def get_documents_position(dataset_id):
        document = Document.query.filter_by(dataset_id=dataset_id).order_by(Document.position.desc()).first()
        if document:
            return document.position + 1
        else:
            return 1

    @staticmethod
    def save_document_with_dataset_id(
        dataset: Dataset,
        knowledge_config: KnowledgeConfig,
        account: Account | Any,
        dataset_process_rule: Optional[DatasetProcessRule] = None,
        created_from: str = "web",
    ):
        # check document limit
        features = FeatureService.get_features(current_user.current_tenant_id)

        if features.billing.enabled:
            if not knowledge_config.original_document_id:
                count = 0
                if knowledge_config.data_source:
                    if knowledge_config.data_source.info_list.data_source_type == "upload_file":
                        upload_file_list = knowledge_config.data_source.info_list.file_info_list.file_ids  # type: ignore
                        count = len(upload_file_list)
                    elif knowledge_config.data_source.info_list.data_source_type == "notion_import":
                        notion_info_list = knowledge_config.data_source.info_list.notion_info_list
                        for notion_info in notion_info_list:  # type: ignore
                            count = count + len(notion_info.pages)
                    elif knowledge_config.data_source.info_list.data_source_type == "website_crawl":
                        website_info = knowledge_config.data_source.info_list.website_info_list
                        count = len(website_info.urls)  # type: ignore
                    batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT)
                    if count > batch_upload_limit:
                        raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")

                    DocumentService.check_documents_upload_quota(count, features)

        # if dataset is empty, update dataset data_source_type
        if not dataset.data_source_type:
            dataset.data_source_type = knowledge_config.data_source.info_list.data_source_type  # type: ignore

        if not dataset.indexing_technique:
            if knowledge_config.indexing_technique not in Dataset.INDEXING_TECHNIQUE_LIST:
                raise ValueError("Indexing technique is invalid")

            dataset.indexing_technique = knowledge_config.indexing_technique
            if knowledge_config.indexing_technique == "high_quality":
                model_manager = ModelManager()
                if knowledge_config.embedding_model and knowledge_config.embedding_model_provider:
                    dataset_embedding_model = knowledge_config.embedding_model
                    dataset_embedding_model_provider = knowledge_config.embedding_model_provider
                else:
                    embedding_model = model_manager.get_default_model_instance(
                        tenant_id=current_user.current_tenant_id, model_type=ModelType.TEXT_EMBEDDING
                    )
                    dataset_embedding_model = embedding_model.model
                    dataset_embedding_model_provider = embedding_model.provider
                dataset.embedding_model = dataset_embedding_model
                dataset.embedding_model_provider = dataset_embedding_model_provider
                dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
                    dataset_embedding_model_provider, dataset_embedding_model
                )
                dataset.collection_binding_id = dataset_collection_binding.id
                if not dataset.retrieval_model:
                    default_retrieval_model = {
                        "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
                        "reranking_enable": False,
                        "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
                        "top_k": 2,
                        "score_threshold_enabled": False,
                    }

                    dataset.retrieval_model = (
                        knowledge_config.retrieval_model.model_dump()
                        if knowledge_config.retrieval_model
                        else default_retrieval_model
                    )  # type: ignore

        documents = []
        if knowledge_config.original_document_id:
            document = DocumentService.update_document_with_dataset_id(dataset, knowledge_config, account)
            documents.append(document)
            batch = document.batch
        else:
            batch = time.strftime("%Y%m%d%H%M%S") + str(random.randint(100000, 999999))
            # save process rule
            if not dataset_process_rule:
                process_rule = knowledge_config.process_rule
                if process_rule:
                    if process_rule.mode in ("custom", "hierarchical"):
                        dataset_process_rule = DatasetProcessRule(
                            dataset_id=dataset.id,
                            mode=process_rule.mode,
                            rules=process_rule.rules.model_dump_json() if process_rule.rules else None,
                            created_by=account.id,
                        )
                    elif process_rule.mode == "automatic":
                        dataset_process_rule = DatasetProcessRule(
                            dataset_id=dataset.id,
                            mode=process_rule.mode,
                            rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
                            created_by=account.id,
                        )
                    else:
                        logging.warn(
                            f"Invalid process rule mode: {process_rule.mode}, can not find dataset process rule"
                        )
                        return
                    db.session.add(dataset_process_rule)
                    db.session.commit()
            lock_name = "add_document_lock_dataset_id_{}".format(dataset.id)
            with redis_client.lock(lock_name, timeout=600):
                position = DocumentService.get_documents_position(dataset.id)
                document_ids = []
                duplicate_document_ids = []
                if knowledge_config.data_source.info_list.data_source_type == "upload_file":  # type: ignore
                    upload_file_list = knowledge_config.data_source.info_list.file_info_list.file_ids  # type: ignore
                    for file_id in upload_file_list:
                        file = (
                            db.session.query(UploadFile)
                            .filter(UploadFile.tenant_id == dataset.tenant_id, UploadFile.id == file_id)
                            .first()
                        )

                        # raise error if file not found
                        if not file:
                            raise FileNotExistsError()

                        file_name = file.name
                        data_source_info = {
                            "upload_file_id": file_id,
                        }
                        # check duplicate
                        if knowledge_config.duplicate:
                            document = Document.query.filter_by(
                                dataset_id=dataset.id,
                                tenant_id=current_user.current_tenant_id,
                                data_source_type="upload_file",
                                enabled=True,
                                name=file_name,
                            ).first()
                            if document:
                                document.dataset_process_rule_id = dataset_process_rule.id  # type: ignore
                                document.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
                                document.created_from = created_from
                                document.doc_form = knowledge_config.doc_form
                                document.doc_language = knowledge_config.doc_language
                                document.data_source_info = json.dumps(data_source_info)
                                document.batch = batch
                                document.indexing_status = "waiting"
                                if knowledge_config.metadata:
                                    document.doc_type = knowledge_config.metadata.doc_type
                                    document.metadata = knowledge_config.metadata.doc_metadata
                                db.session.add(document)
                                documents.append(document)
                                duplicate_document_ids.append(document.id)
                                continue
                        document = DocumentService.build_document(
                            dataset,
                            dataset_process_rule.id,  # type: ignore
                            knowledge_config.data_source.info_list.data_source_type,  # type: ignore
                            knowledge_config.doc_form,
                            knowledge_config.doc_language,
                            data_source_info,
                            created_from,
                            position,
                            account,
                            file_name,
                            batch,
                            knowledge_config.metadata,
                        )
                        db.session.add(document)
                        db.session.flush()
                        document_ids.append(document.id)
                        documents.append(document)
                        position += 1
                elif knowledge_config.data_source.info_list.data_source_type == "notion_import":  # type: ignore
                    notion_info_list = knowledge_config.data_source.info_list.notion_info_list  # type: ignore
                    if not notion_info_list:
                        raise ValueError("No notion info list found.")
                    exist_page_ids = []
                    exist_document = {}
                    documents = Document.query.filter_by(
                        dataset_id=dataset.id,
                        tenant_id=current_user.current_tenant_id,
                        data_source_type="notion_import",
                        enabled=True,
                    ).all()
                    if documents:
                        for document in documents:
                            data_source_info = json.loads(document.data_source_info)
                            exist_page_ids.append(data_source_info["notion_page_id"])
                            exist_document[data_source_info["notion_page_id"]] = document.id
                    for notion_info in notion_info_list:
                        workspace_id = notion_info.workspace_id
                        data_source_binding = DataSourceOauthBinding.query.filter(
                            db.and_(
                                DataSourceOauthBinding.tenant_id == current_user.current_tenant_id,
                                DataSourceOauthBinding.provider == "notion",
                                DataSourceOauthBinding.disabled == False,
                                DataSourceOauthBinding.source_info["workspace_id"] == f'"{workspace_id}"',
                            )
                        ).first()
                        if not data_source_binding:
                            raise ValueError("Data source binding not found.")
                        for page in notion_info.pages:
                            if page.page_id not in exist_page_ids:
                                data_source_info = {
                                    "notion_workspace_id": workspace_id,
                                    "notion_page_id": page.page_id,
                                    "notion_page_icon": page.page_icon.model_dump() if page.page_icon else None,
                                    "type": page.type,
                                }
                                document = DocumentService.build_document(
                                    dataset,
                                    dataset_process_rule.id,  # type: ignore
                                    knowledge_config.data_source.info_list.data_source_type,  # type: ignore
                                    knowledge_config.doc_form,
                                    knowledge_config.doc_language,
                                    data_source_info,
                                    created_from,
                                    position,
                                    account,
                                    page.page_name,
                                    batch,
                                    knowledge_config.metadata,
                                )
                                db.session.add(document)
                                db.session.flush()
                                document_ids.append(document.id)
                                documents.append(document)
                                position += 1
                            else:
                                exist_document.pop(page.page_id)
                    # delete not selected documents
                    if len(exist_document) > 0:
                        clean_notion_document_task.delay(list(exist_document.values()), dataset.id)
                elif knowledge_config.data_source.info_list.data_source_type == "website_crawl":  # type: ignore
                    website_info = knowledge_config.data_source.info_list.website_info_list  # type: ignore
                    if not website_info:
                        raise ValueError("No website info list found.")
                    urls = website_info.urls
                    for url in urls:
                        data_source_info = {
                            "url": url,
                            "provider": website_info.provider,
                            "job_id": website_info.job_id,
                            "only_main_content": website_info.only_main_content,
                            "mode": "crawl",
                        }
                        if len(url) > 255:
                            document_name = url[:200] + "..."
                        else:
                            document_name = url
                        document = DocumentService.build_document(
                            dataset,
                            dataset_process_rule.id,  # type: ignore
                            knowledge_config.data_source.info_list.data_source_type,  # type: ignore
                            knowledge_config.doc_form,
                            knowledge_config.doc_language,
                            data_source_info,
                            created_from,
                            position,
                            account,
                            document_name,
                            batch,
                            knowledge_config.metadata,
                        )
                        db.session.add(document)
                        db.session.flush()
                        document_ids.append(document.id)
                        documents.append(document)
                        position += 1
                db.session.commit()

                # trigger async task
                if document_ids:
                    document_indexing_task.delay(dataset.id, document_ids)
                if duplicate_document_ids:
                    duplicate_document_indexing_task.delay(dataset.id, duplicate_document_ids)

        return documents, batch

    @staticmethod
    def check_documents_upload_quota(count: int, features: FeatureModel):
        can_upload_size = features.documents_upload_quota.limit - features.documents_upload_quota.size
        if count > can_upload_size:
            raise ValueError(
                f"You have reached the limit of your subscription. Only {can_upload_size} documents can be uploaded."
            )

    @staticmethod
    def build_document(
        dataset: Dataset,
        process_rule_id: str,
        data_source_type: str,
        document_form: str,
        document_language: str,
        data_source_info: dict,
        created_from: str,
        position: int,
        account: Account,
        name: str,
        batch: str,
        metadata: Optional[MetaDataConfig] = None,
    ):
        document = Document(
            tenant_id=dataset.tenant_id,
            dataset_id=dataset.id,
            position=position,
            data_source_type=data_source_type,
            data_source_info=json.dumps(data_source_info),
            dataset_process_rule_id=process_rule_id,
            batch=batch,
            name=name,
            created_from=created_from,
            created_by=account.id,
            doc_form=document_form,
            doc_language=document_language,
        )
        if metadata is not None:
            document.doc_metadata = metadata.doc_metadata
            document.doc_type = metadata.doc_type
        return document

    @staticmethod
    def get_tenant_documents_count():
        documents_count = Document.query.filter(
            Document.completed_at.isnot(None),
            Document.enabled == True,
            Document.archived == False,
            Document.tenant_id == current_user.current_tenant_id,
        ).count()
        return documents_count

    @staticmethod
    def update_document_with_dataset_id(
        dataset: Dataset,
        document_data: KnowledgeConfig,
        account: Account,
        dataset_process_rule: Optional[DatasetProcessRule] = None,
        created_from: str = "web",
    ):
        DatasetService.check_dataset_model_setting(dataset)
        document = DocumentService.get_document(dataset.id, document_data.original_document_id)
        if document is None:
            raise NotFound("Document not found")
        if document.display_status != "available":
            raise ValueError("Document is not available")
        # save process rule
        if document_data.process_rule:
            process_rule = document_data.process_rule
            if process_rule.mode in {"custom", "hierarchical"}:
                dataset_process_rule = DatasetProcessRule(
                    dataset_id=dataset.id,
                    mode=process_rule.mode,
                    rules=process_rule.rules.model_dump_json() if process_rule.rules else None,
                    created_by=account.id,
                )
            elif process_rule.mode == "automatic":
                dataset_process_rule = DatasetProcessRule(
                    dataset_id=dataset.id,
                    mode=process_rule.mode,
                    rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
                    created_by=account.id,
                )
            if dataset_process_rule is not None:
                db.session.add(dataset_process_rule)
                db.session.commit()
                document.dataset_process_rule_id = dataset_process_rule.id
        # update document data source
        if document_data.data_source:
            file_name = ""
            data_source_info = {}
            if document_data.data_source.info_list.data_source_type == "upload_file":
                if not document_data.data_source.info_list.file_info_list:
                    raise ValueError("No file info list found.")
                upload_file_list = document_data.data_source.info_list.file_info_list.file_ids
                for file_id in upload_file_list:
                    file = (
                        db.session.query(UploadFile)
                        .filter(UploadFile.tenant_id == dataset.tenant_id, UploadFile.id == file_id)
                        .first()
                    )

                    # raise error if file not found
                    if not file:
                        raise FileNotExistsError()

                    file_name = file.name
                    data_source_info = {
                        "upload_file_id": file_id,
                    }
            elif document_data.data_source.info_list.data_source_type == "notion_import":
                if not document_data.data_source.info_list.notion_info_list:
                    raise ValueError("No notion info list found.")
                notion_info_list = document_data.data_source.info_list.notion_info_list
                for notion_info in notion_info_list:
                    workspace_id = notion_info.workspace_id
                    data_source_binding = DataSourceOauthBinding.query.filter(
                        db.and_(
                            DataSourceOauthBinding.tenant_id == current_user.current_tenant_id,
                            DataSourceOauthBinding.provider == "notion",
                            DataSourceOauthBinding.disabled == False,
                            DataSourceOauthBinding.source_info["workspace_id"] == f'"{workspace_id}"',
                        )
                    ).first()
                    if not data_source_binding:
                        raise ValueError("Data source binding not found.")
                    for page in notion_info.pages:
                        data_source_info = {
                            "notion_workspace_id": workspace_id,
                            "notion_page_id": page.page_id,
                            "notion_page_icon": page.page_icon.model_dump() if page.page_icon else None,  # type: ignore
                            "type": page.type,
                        }
            elif document_data.data_source.info_list.data_source_type == "website_crawl":
                website_info = document_data.data_source.info_list.website_info_list
                if website_info:
                    urls = website_info.urls
                    for url in urls:
                        data_source_info = {
                            "url": url,
                            "provider": website_info.provider,
                            "job_id": website_info.job_id,
                            "only_main_content": website_info.only_main_content,  # type: ignore
                            "mode": "crawl",
                        }
            document.data_source_type = document_data.data_source.info_list.data_source_type
            document.data_source_info = json.dumps(data_source_info)
            document.name = file_name

        # update document name
        if document_data.name:
            document.name = document_data.name
        # update doc_type and doc_metadata if provided
        if document_data.metadata is not None:
            document.doc_metadata = document_data.metadata.doc_type
            document.doc_type = document_data.metadata.doc_type
        # update document to be waiting
        document.indexing_status = "waiting"
        document.completed_at = None
        document.processing_started_at = None
        document.parsing_completed_at = None
        document.cleaning_completed_at = None
        document.splitting_completed_at = None
        document.updated_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
        document.created_from = created_from
        document.doc_form = document_data.doc_form
        db.session.add(document)
        db.session.commit()
        # update document segment
        update_params = {DocumentSegment.status: "re_segment"}
        DocumentSegment.query.filter_by(document_id=document.id).update(update_params)
        db.session.commit()
        # trigger async task
        document_indexing_update_task.delay(document.dataset_id, document.id)
        return document

    @staticmethod
    def save_document_without_dataset_id(tenant_id: str, knowledge_config: KnowledgeConfig, account: Account):
        features = FeatureService.get_features(current_user.current_tenant_id)

        if features.billing.enabled:
            count = 0
            if knowledge_config.data_source.info_list.data_source_type == "upload_file":  # type: ignore
                upload_file_list = (
                    knowledge_config.data_source.info_list.file_info_list.file_ids  # type: ignore
                    if knowledge_config.data_source.info_list.file_info_list  # type: ignore
                    else []
                )
                count = len(upload_file_list)
            elif knowledge_config.data_source.info_list.data_source_type == "notion_import":  # type: ignore
                notion_info_list = knowledge_config.data_source.info_list.notion_info_list  # type: ignore
                if notion_info_list:
                    for notion_info in notion_info_list:
                        count = count + len(notion_info.pages)
            elif knowledge_config.data_source.info_list.data_source_type == "website_crawl":  # type: ignore
                website_info = knowledge_config.data_source.info_list.website_info_list  # type: ignore
                if website_info:
                    count = len(website_info.urls)
            batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT)
            if count > batch_upload_limit:
                raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")

            DocumentService.check_documents_upload_quota(count, features)

        dataset_collection_binding_id = None
        retrieval_model = None
        if knowledge_config.indexing_technique == "high_quality":
            dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
                knowledge_config.embedding_model_provider,  # type: ignore
                knowledge_config.embedding_model,  # type: ignore
            )
            dataset_collection_binding_id = dataset_collection_binding.id
            if knowledge_config.retrieval_model:
                retrieval_model = knowledge_config.retrieval_model
            else:
                retrieval_model = RetrievalModel(
                    search_method=RetrievalMethod.SEMANTIC_SEARCH.value,
                    reranking_enable=False,
                    reranking_model=RerankingModel(reranking_provider_name="", reranking_model_name=""),
                    top_k=2,
                    score_threshold_enabled=False,
                )
        # save dataset
        dataset = Dataset(
            tenant_id=tenant_id,
            name="",
            data_source_type=knowledge_config.data_source.info_list.data_source_type,  # type: ignore
            indexing_technique=knowledge_config.indexing_technique,
            created_by=account.id,
            embedding_model=knowledge_config.embedding_model,
            embedding_model_provider=knowledge_config.embedding_model_provider,
            collection_binding_id=dataset_collection_binding_id,
            retrieval_model=retrieval_model.model_dump() if retrieval_model else None,
        )

        db.session.add(dataset)  # type: ignore
        db.session.flush()

        documents, batch = DocumentService.save_document_with_dataset_id(dataset, knowledge_config, account)

        cut_length = 18
        cut_name = documents[0].name[:cut_length]
        dataset.name = cut_name + "..."
        dataset.description = "useful for when you want to answer queries about the " + documents[0].name
        db.session.commit()

        return dataset, documents, batch

    @classmethod
    def document_create_args_validate(cls, knowledge_config: KnowledgeConfig):
        if not knowledge_config.data_source and not knowledge_config.process_rule:
            raise ValueError("Data source or Process rule is required")
        else:
            if knowledge_config.data_source:
                DocumentService.data_source_args_validate(knowledge_config)
            if knowledge_config.process_rule:
                DocumentService.process_rule_args_validate(knowledge_config)

    @classmethod
    def data_source_args_validate(cls, knowledge_config: KnowledgeConfig):
        if not knowledge_config.data_source:
            raise ValueError("Data source is required")

        if knowledge_config.data_source.info_list.data_source_type not in Document.DATA_SOURCES:
            raise ValueError("Data source type is invalid")

        if not knowledge_config.data_source.info_list:
            raise ValueError("Data source info is required")

        if knowledge_config.data_source.info_list.data_source_type == "upload_file":
            if not knowledge_config.data_source.info_list.file_info_list:
                raise ValueError("File source info is required")
        if knowledge_config.data_source.info_list.data_source_type == "notion_import":
            if not knowledge_config.data_source.info_list.notion_info_list:
                raise ValueError("Notion source info is required")
        if knowledge_config.data_source.info_list.data_source_type == "website_crawl":
            if not knowledge_config.data_source.info_list.website_info_list:
                raise ValueError("Website source info is required")

    @classmethod
    def process_rule_args_validate(cls, knowledge_config: KnowledgeConfig):
        if not knowledge_config.process_rule:
            raise ValueError("Process rule is required")

        if not knowledge_config.process_rule.mode:
            raise ValueError("Process rule mode is required")

        if knowledge_config.process_rule.mode not in DatasetProcessRule.MODES:
            raise ValueError("Process rule mode is invalid")

        if knowledge_config.process_rule.mode == "automatic":
            knowledge_config.process_rule.rules = None
        else:
            if not knowledge_config.process_rule.rules:
                raise ValueError("Process rule rules is required")

            if knowledge_config.process_rule.rules.pre_processing_rules is None:
                raise ValueError("Process rule pre_processing_rules is required")

            unique_pre_processing_rule_dicts = {}
            for pre_processing_rule in knowledge_config.process_rule.rules.pre_processing_rules:
                if not pre_processing_rule.id:
                    raise ValueError("Process rule pre_processing_rules id is required")

                if not isinstance(pre_processing_rule.enabled, bool):
                    raise ValueError("Process rule pre_processing_rules enabled is invalid")

                unique_pre_processing_rule_dicts[pre_processing_rule.id] = pre_processing_rule

            knowledge_config.process_rule.rules.pre_processing_rules = list(unique_pre_processing_rule_dicts.values())

            if not knowledge_config.process_rule.rules.segmentation:
                raise ValueError("Process rule segmentation is required")

            if not knowledge_config.process_rule.rules.segmentation.separator:
                raise ValueError("Process rule segmentation separator is required")

            if not isinstance(knowledge_config.process_rule.rules.segmentation.separator, str):
                raise ValueError("Process rule segmentation separator is invalid")

            if not (
                knowledge_config.process_rule.mode == "hierarchical"
                and knowledge_config.process_rule.rules.parent_mode == "full-doc"
            ):
                if not knowledge_config.process_rule.rules.segmentation.max_tokens:
                    raise ValueError("Process rule segmentation max_tokens is required")

                if not isinstance(knowledge_config.process_rule.rules.segmentation.max_tokens, int):
                    raise ValueError("Process rule segmentation max_tokens is invalid")

    @classmethod
    def estimate_args_validate(cls, args: dict):
        if "info_list" not in args or not args["info_list"]:
            raise ValueError("Data source info is required")

        if not isinstance(args["info_list"], dict):
            raise ValueError("Data info is invalid")

        if "process_rule" not in args or not args["process_rule"]:
            raise ValueError("Process rule is required")

        if not isinstance(args["process_rule"], dict):
            raise ValueError("Process rule is invalid")

        if "mode" not in args["process_rule"] or not args["process_rule"]["mode"]:
            raise ValueError("Process rule mode is required")

        if args["process_rule"]["mode"] not in DatasetProcessRule.MODES:
            raise ValueError("Process rule mode is invalid")

        if args["process_rule"]["mode"] == "automatic":
            args["process_rule"]["rules"] = {}
        else:
            if "rules" not in args["process_rule"] or not args["process_rule"]["rules"]:
                raise ValueError("Process rule rules is required")

            if not isinstance(args["process_rule"]["rules"], dict):
                raise ValueError("Process rule rules is invalid")

            if (
                "pre_processing_rules" not in args["process_rule"]["rules"]
                or args["process_rule"]["rules"]["pre_processing_rules"] is None
            ):
                raise ValueError("Process rule pre_processing_rules is required")

            if not isinstance(args["process_rule"]["rules"]["pre_processing_rules"], list):
                raise ValueError("Process rule pre_processing_rules is invalid")

            unique_pre_processing_rule_dicts = {}
            for pre_processing_rule in args["process_rule"]["rules"]["pre_processing_rules"]:
                if "id" not in pre_processing_rule or not pre_processing_rule["id"]:
                    raise ValueError("Process rule pre_processing_rules id is required")

                if pre_processing_rule["id"] not in DatasetProcessRule.PRE_PROCESSING_RULES:
                    raise ValueError("Process rule pre_processing_rules id is invalid")

                if "enabled" not in pre_processing_rule or pre_processing_rule["enabled"] is None:
                    raise ValueError("Process rule pre_processing_rules enabled is required")

                if not isinstance(pre_processing_rule["enabled"], bool):
                    raise ValueError("Process rule pre_processing_rules enabled is invalid")

                unique_pre_processing_rule_dicts[pre_processing_rule["id"]] = pre_processing_rule

            args["process_rule"]["rules"]["pre_processing_rules"] = list(unique_pre_processing_rule_dicts.values())

            if (
                "segmentation" not in args["process_rule"]["rules"]
                or args["process_rule"]["rules"]["segmentation"] is None
            ):
                raise ValueError("Process rule segmentation is required")

            if not isinstance(args["process_rule"]["rules"]["segmentation"], dict):
                raise ValueError("Process rule segmentation is invalid")

            if (
                "separator" not in args["process_rule"]["rules"]["segmentation"]
                or not args["process_rule"]["rules"]["segmentation"]["separator"]
            ):
                raise ValueError("Process rule segmentation separator is required")

            if not isinstance(args["process_rule"]["rules"]["segmentation"]["separator"], str):
                raise ValueError("Process rule segmentation separator is invalid")

            if (
                "max_tokens" not in args["process_rule"]["rules"]["segmentation"]
                or not args["process_rule"]["rules"]["segmentation"]["max_tokens"]
            ):
                raise ValueError("Process rule segmentation max_tokens is required")

            if not isinstance(args["process_rule"]["rules"]["segmentation"]["max_tokens"], int):
                raise ValueError("Process rule segmentation max_tokens is invalid")


class SegmentService:
    @classmethod
    def segment_create_args_validate(cls, args: dict, document: Document):
        if document.doc_form == "qa_model":
            if "answer" not in args or not args["answer"]:
                raise ValueError("Answer is required")
            if not args["answer"].strip():
                raise ValueError("Answer is empty")
        if "content" not in args or not args["content"] or not args["content"].strip():
            raise ValueError("Content is empty")

    @classmethod
    def create_segment(cls, args: dict, document: Document, dataset: Dataset):
        content = args["content"]
        doc_id = str(uuid.uuid4())
        segment_hash = helper.generate_text_hash(content)
        tokens = 0
        if dataset.indexing_technique == "high_quality":
            model_manager = ModelManager()
            embedding_model = model_manager.get_model_instance(
                tenant_id=current_user.current_tenant_id,
                provider=dataset.embedding_model_provider,
                model_type=ModelType.TEXT_EMBEDDING,
                model=dataset.embedding_model,
            )
            # calc embedding use tokens
            tokens = embedding_model.get_text_embedding_num_tokens(texts=[content])
        lock_name = "add_segment_lock_document_id_{}".format(document.id)
        with redis_client.lock(lock_name, timeout=600):
            max_position = (
                db.session.query(func.max(DocumentSegment.position))
                .filter(DocumentSegment.document_id == document.id)
                .scalar()
            )
            segment_document = DocumentSegment(
                tenant_id=current_user.current_tenant_id,
                dataset_id=document.dataset_id,
                document_id=document.id,
                index_node_id=doc_id,
                index_node_hash=segment_hash,
                position=max_position + 1 if max_position else 1,
                content=content,
                word_count=len(content),
                tokens=tokens,
                status="completed",
                indexing_at=datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
                completed_at=datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
                created_by=current_user.id,
            )
            if document.doc_form == "qa_model":
                segment_document.word_count += len(args["answer"])
                segment_document.answer = args["answer"]

            db.session.add(segment_document)
            # update document word count
            document.word_count += segment_document.word_count
            db.session.add(document)
            db.session.commit()

            # save vector index
            try:
                VectorService.create_segments_vector([args["keywords"]], [segment_document], dataset, document.doc_form)
            except Exception as e:
                logging.exception("create segment index failed")
                segment_document.enabled = False
                segment_document.disabled_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
                segment_document.status = "error"
                segment_document.error = str(e)
                db.session.commit()
            segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_document.id).first()
            return segment

    @classmethod
    def multi_create_segment(cls, segments: list, document: Document, dataset: Dataset):
        lock_name = "multi_add_segment_lock_document_id_{}".format(document.id)
        increment_word_count = 0
        with redis_client.lock(lock_name, timeout=600):
            embedding_model = None
            if dataset.indexing_technique == "high_quality":
                model_manager = ModelManager()
                embedding_model = model_manager.get_model_instance(
                    tenant_id=current_user.current_tenant_id,
                    provider=dataset.embedding_model_provider,
                    model_type=ModelType.TEXT_EMBEDDING,
                    model=dataset.embedding_model,
                )
            max_position = (
                db.session.query(func.max(DocumentSegment.position))
                .filter(DocumentSegment.document_id == document.id)
                .scalar()
            )
            pre_segment_data_list = []
            segment_data_list = []
            keywords_list = []
            position = max_position + 1 if max_position else 1
            for segment_item in segments:
                content = segment_item["content"]
                doc_id = str(uuid.uuid4())
                segment_hash = helper.generate_text_hash(content)
                tokens = 0
                if dataset.indexing_technique == "high_quality" and embedding_model:
                    # calc embedding use tokens
                    if document.doc_form == "qa_model":
                        tokens = embedding_model.get_text_embedding_num_tokens(texts=[content + segment_item["answer"]])
                    else:
                        tokens = embedding_model.get_text_embedding_num_tokens(texts=[content])
                segment_document = DocumentSegment(
                    tenant_id=current_user.current_tenant_id,
                    dataset_id=document.dataset_id,
                    document_id=document.id,
                    index_node_id=doc_id,
                    index_node_hash=segment_hash,
                    position=position,
                    content=content,
                    word_count=len(content),
                    tokens=tokens,
                    status="completed",
                    indexing_at=datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
                    completed_at=datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
                    created_by=current_user.id,
                )
                if document.doc_form == "qa_model":
                    segment_document.answer = segment_item["answer"]
                    segment_document.word_count += len(segment_item["answer"])
                increment_word_count += segment_document.word_count
                db.session.add(segment_document)
                segment_data_list.append(segment_document)
                position += 1

                pre_segment_data_list.append(segment_document)
                if "keywords" in segment_item:
                    keywords_list.append(segment_item["keywords"])
                else:
                    keywords_list.append(None)
            # update document word count
            document.word_count += increment_word_count
            db.session.add(document)
            try:
                # save vector index
                VectorService.create_segments_vector(keywords_list, pre_segment_data_list, dataset, document.doc_form)
            except Exception as e:
                logging.exception("create segment index failed")
                for segment_document in segment_data_list:
                    segment_document.enabled = False
                    segment_document.disabled_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
                    segment_document.status = "error"
                    segment_document.error = str(e)
            db.session.commit()
            return segment_data_list

    @classmethod
    def update_segment(cls, args: SegmentUpdateArgs, segment: DocumentSegment, document: Document, dataset: Dataset):
        indexing_cache_key = "segment_{}_indexing".format(segment.id)
        cache_result = redis_client.get(indexing_cache_key)
        if cache_result is not None:
            raise ValueError("Segment is indexing, please try again later")
        if args.enabled is not None:
            action = args.enabled
            if segment.enabled != action:
                if not action:
                    segment.enabled = action
                    segment.disabled_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
                    segment.disabled_by = current_user.id
                    db.session.add(segment)
                    db.session.commit()
                    # Set cache to prevent indexing the same segment multiple times
                    redis_client.setex(indexing_cache_key, 600, 1)
                    disable_segment_from_index_task.delay(segment.id)
                    return segment
        if not segment.enabled:
            if args.enabled is not None:
                if not args.enabled:
                    raise ValueError("Can't update disabled segment")
            else:
                raise ValueError("Can't update disabled segment")
        try:
            word_count_change = segment.word_count
            content = args.content or segment.content
            if segment.content == content:
                segment.word_count = len(content)
                if document.doc_form == "qa_model":
                    segment.answer = args.answer
                    segment.word_count += len(args.answer) if args.answer else 0
                word_count_change = segment.word_count - word_count_change
                keyword_changed = False
                if args.keywords:
                    if Counter(segment.keywords) != Counter(args.keywords):
                        segment.keywords = args.keywords
                        keyword_changed = True
                segment.enabled = True
                segment.disabled_at = None
                segment.disabled_by = None
                db.session.add(segment)
                db.session.commit()
                # update document word count
                if word_count_change != 0:
                    document.word_count = max(0, document.word_count + word_count_change)
                    db.session.add(document)
                # update segment index task
                if document.doc_form == IndexType.PARENT_CHILD_INDEX and args.regenerate_child_chunks:
                    # regenerate child chunks
                    # get embedding model instance
                    if dataset.indexing_technique == "high_quality":
                        # check embedding model setting
                        model_manager = ModelManager()

                        if dataset.embedding_model_provider:
                            embedding_model_instance = model_manager.get_model_instance(
                                tenant_id=dataset.tenant_id,
                                provider=dataset.embedding_model_provider,
                                model_type=ModelType.TEXT_EMBEDDING,
                                model=dataset.embedding_model,
                            )
                        else:
                            embedding_model_instance = model_manager.get_default_model_instance(
                                tenant_id=dataset.tenant_id,
                                model_type=ModelType.TEXT_EMBEDDING,
                            )
                    else:
                        raise ValueError("The knowledge base index technique is not high quality!")
                    # get the process rule
                    processing_rule = (
                        db.session.query(DatasetProcessRule)
                        .filter(DatasetProcessRule.id == document.dataset_process_rule_id)
                        .first()
                    )
                    if not processing_rule:
                        raise ValueError("No processing rule found.")
                    VectorService.generate_child_chunks(
                        segment, document, dataset, embedding_model_instance, processing_rule, True
                    )
                elif document.doc_form in (IndexType.PARAGRAPH_INDEX, IndexType.QA_INDEX):
                    if args.enabled or keyword_changed:
                        VectorService.create_segments_vector(
                            [args.keywords] if args.keywords else None,
                            [segment],
                            dataset,
                            document.doc_form,
                        )
            else:
                segment_hash = helper.generate_text_hash(content)
                tokens = 0
                if dataset.indexing_technique == "high_quality":
                    model_manager = ModelManager()
                    embedding_model = model_manager.get_model_instance(
                        tenant_id=current_user.current_tenant_id,
                        provider=dataset.embedding_model_provider,
                        model_type=ModelType.TEXT_EMBEDDING,
                        model=dataset.embedding_model,
                    )

                    # calc embedding use tokens
                    if document.doc_form == "qa_model":
                        tokens = embedding_model.get_text_embedding_num_tokens(texts=[content + segment.answer])
                    else:
                        tokens = embedding_model.get_text_embedding_num_tokens(texts=[content])
                segment.content = content
                segment.index_node_hash = segment_hash
                segment.word_count = len(content)
                segment.tokens = tokens
                segment.status = "completed"
                segment.indexing_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
                segment.completed_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
                segment.updated_by = current_user.id
                segment.updated_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
                segment.enabled = True
                segment.disabled_at = None
                segment.disabled_by = None
                if document.doc_form == "qa_model":
                    segment.answer = args.answer
                    segment.word_count += len(args.answer) if args.answer else 0
                word_count_change = segment.word_count - word_count_change
                # update document word count
                if word_count_change != 0:
                    document.word_count = max(0, document.word_count + word_count_change)
                    db.session.add(document)
                db.session.add(segment)
                db.session.commit()
                if document.doc_form == IndexType.PARENT_CHILD_INDEX and args.regenerate_child_chunks:
                    # get embedding model instance
                    if dataset.indexing_technique == "high_quality":
                        # check embedding model setting
                        model_manager = ModelManager()

                        if dataset.embedding_model_provider:
                            embedding_model_instance = model_manager.get_model_instance(
                                tenant_id=dataset.tenant_id,
                                provider=dataset.embedding_model_provider,
                                model_type=ModelType.TEXT_EMBEDDING,
                                model=dataset.embedding_model,
                            )
                        else:
                            embedding_model_instance = model_manager.get_default_model_instance(
                                tenant_id=dataset.tenant_id,
                                model_type=ModelType.TEXT_EMBEDDING,
                            )
                    else:
                        raise ValueError("The knowledge base index technique is not high quality!")
                    # get the process rule
                    processing_rule = (
                        db.session.query(DatasetProcessRule)
                        .filter(DatasetProcessRule.id == document.dataset_process_rule_id)
                        .first()
                    )
                    if not processing_rule:
                        raise ValueError("No processing rule found.")
                    VectorService.generate_child_chunks(
                        segment, document, dataset, embedding_model_instance, processing_rule, True
                    )
                elif document.doc_form in (IndexType.PARAGRAPH_INDEX, IndexType.QA_INDEX):
                    # update segment vector index
                    VectorService.update_segment_vector(args.keywords, segment, dataset)

        except Exception as e:
            logging.exception("update segment index failed")
            segment.enabled = False
            segment.disabled_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
            segment.status = "error"
            segment.error = str(e)
            db.session.commit()
        new_segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment.id).first()
        return new_segment

    @classmethod
    def delete_segment(cls, segment: DocumentSegment, document: Document, dataset: Dataset):
        indexing_cache_key = "segment_{}_delete_indexing".format(segment.id)
        cache_result = redis_client.get(indexing_cache_key)
        if cache_result is not None:
            raise ValueError("Segment is deleting.")

        # enabled segment need to delete index
        if segment.enabled:
            # send delete segment index task
            redis_client.setex(indexing_cache_key, 600, 1)
            delete_segment_from_index_task.delay([segment.index_node_id], dataset.id, document.id)
        db.session.delete(segment)
        # update document word count
        document.word_count -= segment.word_count
        db.session.add(document)
        db.session.commit()

    @classmethod
    def delete_segments(cls, segment_ids: list, document: Document, dataset: Dataset):
        index_node_ids = (
            DocumentSegment.query.with_entities(DocumentSegment.index_node_id)
            .filter(
                DocumentSegment.id.in_(segment_ids),
                DocumentSegment.dataset_id == dataset.id,
                DocumentSegment.document_id == document.id,
                DocumentSegment.tenant_id == current_user.current_tenant_id,
            )
            .all()
        )
        index_node_ids = [index_node_id[0] for index_node_id in index_node_ids]

        delete_segment_from_index_task.delay(index_node_ids, dataset.id, document.id)
        db.session.query(DocumentSegment).filter(DocumentSegment.id.in_(segment_ids)).delete()
        db.session.commit()

    @classmethod
    def update_segments_status(cls, segment_ids: list, action: str, dataset: Dataset, document: Document):
        if action == "enable":
            segments = (
                db.session.query(DocumentSegment)
                .filter(
                    DocumentSegment.id.in_(segment_ids),
                    DocumentSegment.dataset_id == dataset.id,
                    DocumentSegment.document_id == document.id,
                    DocumentSegment.enabled == False,
                )
                .all()
            )
            if not segments:
                return
            real_deal_segmment_ids = []
            for segment in segments:
                indexing_cache_key = "segment_{}_indexing".format(segment.id)
                cache_result = redis_client.get(indexing_cache_key)
                if cache_result is not None:
                    continue
                segment.enabled = True
                segment.disabled_at = None
                segment.disabled_by = None
                db.session.add(segment)
                real_deal_segmment_ids.append(segment.id)
            db.session.commit()

            enable_segments_to_index_task.delay(real_deal_segmment_ids, dataset.id, document.id)
        elif action == "disable":
            segments = (
                db.session.query(DocumentSegment)
                .filter(
                    DocumentSegment.id.in_(segment_ids),
                    DocumentSegment.dataset_id == dataset.id,
                    DocumentSegment.document_id == document.id,
                    DocumentSegment.enabled == True,
                )
                .all()
            )
            if not segments:
                return
            real_deal_segmment_ids = []
            for segment in segments:
                indexing_cache_key = "segment_{}_indexing".format(segment.id)
                cache_result = redis_client.get(indexing_cache_key)
                if cache_result is not None:
                    continue
                segment.enabled = False
                segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
                segment.disabled_by = current_user.id
                db.session.add(segment)
                real_deal_segmment_ids.append(segment.id)
            db.session.commit()

            disable_segments_from_index_task.delay(real_deal_segmment_ids, dataset.id, document.id)
        else:
            raise InvalidActionError()

    @classmethod
    def create_child_chunk(
        cls, content: str, segment: DocumentSegment, document: Document, dataset: Dataset
    ) -> ChildChunk:
        lock_name = "add_child_lock_{}".format(segment.id)
        with redis_client.lock(lock_name, timeout=20):
            index_node_id = str(uuid.uuid4())
            index_node_hash = helper.generate_text_hash(content)
            child_chunk_count = (
                db.session.query(ChildChunk)
                .filter(
                    ChildChunk.tenant_id == current_user.current_tenant_id,
                    ChildChunk.dataset_id == dataset.id,
                    ChildChunk.document_id == document.id,
                    ChildChunk.segment_id == segment.id,
                )
                .count()
            )
            max_position = (
                db.session.query(func.max(ChildChunk.position))
                .filter(
                    ChildChunk.tenant_id == current_user.current_tenant_id,
                    ChildChunk.dataset_id == dataset.id,
                    ChildChunk.document_id == document.id,
                    ChildChunk.segment_id == segment.id,
                )
                .scalar()
            )
            child_chunk = ChildChunk(
                tenant_id=current_user.current_tenant_id,
                dataset_id=dataset.id,
                document_id=document.id,
                segment_id=segment.id,
                position=max_position + 1,
                index_node_id=index_node_id,
                index_node_hash=index_node_hash,
                content=content,
                word_count=len(content),
                type="customized",
                created_by=current_user.id,
            )
            db.session.add(child_chunk)
            # save vector index
            try:
                VectorService.create_child_chunk_vector(child_chunk, dataset)
            except Exception as e:
                logging.exception("create child chunk index failed")
                db.session.rollback()
                raise ChildChunkIndexingError(str(e))
            db.session.commit()

            return child_chunk

    @classmethod
    def update_child_chunks(
        cls,
        child_chunks_update_args: list[ChildChunkUpdateArgs],
        segment: DocumentSegment,
        document: Document,
        dataset: Dataset,
    ) -> list[ChildChunk]:
        child_chunks = (
            db.session.query(ChildChunk)
            .filter(
                ChildChunk.dataset_id == dataset.id,
                ChildChunk.document_id == document.id,
                ChildChunk.segment_id == segment.id,
            )
            .all()
        )
        child_chunks_map = {chunk.id: chunk for chunk in child_chunks}

        new_child_chunks, update_child_chunks, delete_child_chunks, new_child_chunks_args = [], [], [], []

        for child_chunk_update_args in child_chunks_update_args:
            if child_chunk_update_args.id:
                child_chunk = child_chunks_map.pop(child_chunk_update_args.id, None)
                if child_chunk:
                    if child_chunk.content != child_chunk_update_args.content:
                        child_chunk.content = child_chunk_update_args.content
                        child_chunk.word_count = len(child_chunk.content)
                        child_chunk.updated_by = current_user.id
                        child_chunk.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
                        child_chunk.type = "customized"
                        update_child_chunks.append(child_chunk)
            else:
                new_child_chunks_args.append(child_chunk_update_args)
        if child_chunks_map:
            delete_child_chunks = list(child_chunks_map.values())
        try:
            if update_child_chunks:
                db.session.bulk_save_objects(update_child_chunks)

            if delete_child_chunks:
                for child_chunk in delete_child_chunks:
                    db.session.delete(child_chunk)
            if new_child_chunks_args:
                child_chunk_count = len(child_chunks)
                for position, args in enumerate(new_child_chunks_args, start=child_chunk_count + 1):
                    index_node_id = str(uuid.uuid4())
                    index_node_hash = helper.generate_text_hash(args.content)
                    child_chunk = ChildChunk(
                        tenant_id=current_user.current_tenant_id,
                        dataset_id=dataset.id,
                        document_id=document.id,
                        segment_id=segment.id,
                        position=position,
                        index_node_id=index_node_id,
                        index_node_hash=index_node_hash,
                        content=args.content,
                        word_count=len(args.content),
                        type="customized",
                        created_by=current_user.id,
                    )

                    db.session.add(child_chunk)
                    db.session.flush()
                    new_child_chunks.append(child_chunk)
            VectorService.update_child_chunk_vector(new_child_chunks, update_child_chunks, delete_child_chunks, dataset)
            db.session.commit()
        except Exception as e:
            logging.exception("update child chunk index failed")
            db.session.rollback()
            raise ChildChunkIndexingError(str(e))
        return sorted(new_child_chunks + update_child_chunks, key=lambda x: x.position)

    @classmethod
    def update_child_chunk(
        cls,
        content: str,
        child_chunk: ChildChunk,
        segment: DocumentSegment,
        document: Document,
        dataset: Dataset,
    ) -> ChildChunk:
        try:
            child_chunk.content = content
            child_chunk.word_count = len(content)
            child_chunk.updated_by = current_user.id
            child_chunk.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
            child_chunk.type = "customized"
            db.session.add(child_chunk)
            VectorService.update_child_chunk_vector([], [child_chunk], [], dataset)
            db.session.commit()
        except Exception as e:
            logging.exception("update child chunk index failed")
            db.session.rollback()
            raise ChildChunkIndexingError(str(e))
        return child_chunk

    @classmethod
    def delete_child_chunk(cls, child_chunk: ChildChunk, dataset: Dataset):
        db.session.delete(child_chunk)
        try:
            VectorService.delete_child_chunk_vector(child_chunk, dataset)
        except Exception as e:
            logging.exception("delete child chunk index failed")
            db.session.rollback()
            raise ChildChunkDeleteIndexError(str(e))
        db.session.commit()

    @classmethod
    def get_child_chunks(
        cls, segment_id: str, document_id: str, dataset_id: str, page: int, limit: int, keyword: Optional[str] = None
    ):
        query = ChildChunk.query.filter_by(
            tenant_id=current_user.current_tenant_id,
            dataset_id=dataset_id,
            document_id=document_id,
            segment_id=segment_id,
        ).order_by(ChildChunk.position.asc())
        if keyword:
            query = query.where(ChildChunk.content.ilike(f"%{keyword}%"))
        return query.paginate(page=page, per_page=limit, max_per_page=100, error_out=False)


class DatasetCollectionBindingService:
    @classmethod
    def get_dataset_collection_binding(
        cls, provider_name: str, model_name: str, collection_type: str = "dataset"
    ) -> DatasetCollectionBinding:
        dataset_collection_binding = (
            db.session.query(DatasetCollectionBinding)
            .filter(
                DatasetCollectionBinding.provider_name == provider_name,
                DatasetCollectionBinding.model_name == model_name,
                DatasetCollectionBinding.type == collection_type,
            )
            .order_by(DatasetCollectionBinding.created_at)
            .first()
        )

        if not dataset_collection_binding:
            dataset_collection_binding = DatasetCollectionBinding(
                provider_name=provider_name,
                model_name=model_name,
                collection_name=Dataset.gen_collection_name_by_id(str(uuid.uuid4())),
                type=collection_type,
            )
            db.session.add(dataset_collection_binding)
            db.session.commit()
        return dataset_collection_binding

    @classmethod
    def get_dataset_collection_binding_by_id_and_type(
        cls, collection_binding_id: str, collection_type: str = "dataset"
    ) -> DatasetCollectionBinding:
        dataset_collection_binding = (
            db.session.query(DatasetCollectionBinding)
            .filter(
                DatasetCollectionBinding.id == collection_binding_id, DatasetCollectionBinding.type == collection_type
            )
            .order_by(DatasetCollectionBinding.created_at)
            .first()
        )
        if not dataset_collection_binding:
            raise ValueError("Dataset collection binding not found")

        return dataset_collection_binding


class DatasetPermissionService:
    @classmethod
    def get_dataset_partial_member_list(cls, dataset_id):
        user_list_query = (
            db.session.query(
                DatasetPermission.account_id,
            )
            .filter(DatasetPermission.dataset_id == dataset_id)
            .all()
        )

        user_list = []
        for user in user_list_query:
            user_list.append(user.account_id)

        return user_list

    @classmethod
    def update_partial_member_list(cls, tenant_id, dataset_id, user_list):
        try:
            db.session.query(DatasetPermission).filter(DatasetPermission.dataset_id == dataset_id).delete()
            permissions = []
            for user in user_list:
                permission = DatasetPermission(
                    tenant_id=tenant_id,
                    dataset_id=dataset_id,
                    account_id=user["user_id"],
                )
                permissions.append(permission)

            db.session.add_all(permissions)
            db.session.commit()
        except Exception as e:
            db.session.rollback()
            raise e

    @classmethod
    def check_permission(cls, user, dataset, requested_permission, requested_partial_member_list):
        if not user.is_dataset_editor:
            raise NoPermissionError("User does not have permission to edit this dataset.")

        if user.is_dataset_operator and dataset.permission != requested_permission:
            raise NoPermissionError("Dataset operators cannot change the dataset permissions.")

        if user.is_dataset_operator and requested_permission == "partial_members":
            if not requested_partial_member_list:
                raise ValueError("Partial member list is required when setting to partial members.")

            local_member_list = cls.get_dataset_partial_member_list(dataset.id)
            request_member_list = [user["user_id"] for user in requested_partial_member_list]
            if set(local_member_list) != set(request_member_list):
                raise ValueError("Dataset operators cannot change the dataset permissions.")

    @classmethod
    def clear_partial_member_list(cls, dataset_id):
        try:
            db.session.query(DatasetPermission).filter(DatasetPermission.dataset_id == dataset_id).delete()
            db.session.commit()
        except Exception as e:
            db.session.rollback()
            raise e