File size: 33,546 Bytes
bcc0d8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
import concurrent.futures
import datetime
import json
import logging
import re
import threading
import time
import uuid
from typing import Any, Optional, cast

from flask import current_app
from flask_login import current_user  # type: ignore
from sqlalchemy.orm.exc import ObjectDeletedError

from configs import dify_config
from core.entities.knowledge_entities import IndexingEstimate, PreviewDetail, QAPreviewDetail
from core.errors.error import ProviderTokenNotInitError
from core.model_manager import ModelInstance, ModelManager
from core.model_runtime.entities.model_entities import ModelType
from core.rag.cleaner.clean_processor import CleanProcessor
from core.rag.datasource.keyword.keyword_factory import Keyword
from core.rag.docstore.dataset_docstore import DatasetDocumentStore
from core.rag.extractor.entity.extract_setting import ExtractSetting
from core.rag.index_processor.constant.index_type import IndexType
from core.rag.index_processor.index_processor_base import BaseIndexProcessor
from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
from core.rag.models.document import ChildDocument, Document
from core.rag.splitter.fixed_text_splitter import (
    EnhanceRecursiveCharacterTextSplitter,
    FixedRecursiveCharacterTextSplitter,
)
from core.rag.splitter.text_splitter import TextSplitter
from core.tools.utils.web_reader_tool import get_image_upload_file_ids
from extensions.ext_database import db
from extensions.ext_redis import redis_client
from extensions.ext_storage import storage
from libs import helper
from models.dataset import ChildChunk, Dataset, DatasetProcessRule, DocumentSegment
from models.dataset import Document as DatasetDocument
from models.model import UploadFile
from services.feature_service import FeatureService


class IndexingRunner:
    def __init__(self):
        self.storage = storage
        self.model_manager = ModelManager()

    def run(self, dataset_documents: list[DatasetDocument]):
        """Run the indexing process."""
        for dataset_document in dataset_documents:
            try:
                # get dataset
                dataset = Dataset.query.filter_by(id=dataset_document.dataset_id).first()

                if not dataset:
                    raise ValueError("no dataset found")

                # get the process rule
                processing_rule = (
                    db.session.query(DatasetProcessRule)
                    .filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id)
                    .first()
                )
                if not processing_rule:
                    raise ValueError("no process rule found")
                index_type = dataset_document.doc_form
                index_processor = IndexProcessorFactory(index_type).init_index_processor()
                # extract
                text_docs = self._extract(index_processor, dataset_document, processing_rule.to_dict())

                # transform
                documents = self._transform(
                    index_processor, dataset, text_docs, dataset_document.doc_language, processing_rule.to_dict()
                )
                # save segment
                self._load_segments(dataset, dataset_document, documents)

                # load
                self._load(
                    index_processor=index_processor,
                    dataset=dataset,
                    dataset_document=dataset_document,
                    documents=documents,
                )
            except DocumentIsPausedError:
                raise DocumentIsPausedError("Document paused, document id: {}".format(dataset_document.id))
            except ProviderTokenNotInitError as e:
                dataset_document.indexing_status = "error"
                dataset_document.error = str(e.description)
                dataset_document.stopped_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
                db.session.commit()
            except ObjectDeletedError:
                logging.warning("Document deleted, document id: {}".format(dataset_document.id))
            except Exception as e:
                logging.exception("consume document failed")
                dataset_document.indexing_status = "error"
                dataset_document.error = str(e)
                dataset_document.stopped_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
                db.session.commit()

    def run_in_splitting_status(self, dataset_document: DatasetDocument):
        """Run the indexing process when the index_status is splitting."""
        try:
            # get dataset
            dataset = Dataset.query.filter_by(id=dataset_document.dataset_id).first()

            if not dataset:
                raise ValueError("no dataset found")

            # get exist document_segment list and delete
            document_segments = DocumentSegment.query.filter_by(
                dataset_id=dataset.id, document_id=dataset_document.id
            ).all()

            for document_segment in document_segments:
                db.session.delete(document_segment)
                if dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX:
                    # delete child chunks
                    db.session.query(ChildChunk).filter(ChildChunk.segment_id == document_segment.id).delete()
            db.session.commit()
            # get the process rule
            processing_rule = (
                db.session.query(DatasetProcessRule)
                .filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id)
                .first()
            )
            if not processing_rule:
                raise ValueError("no process rule found")

            index_type = dataset_document.doc_form
            index_processor = IndexProcessorFactory(index_type).init_index_processor()
            # extract
            text_docs = self._extract(index_processor, dataset_document, processing_rule.to_dict())

            # transform
            documents = self._transform(
                index_processor, dataset, text_docs, dataset_document.doc_language, processing_rule.to_dict()
            )
            # save segment
            self._load_segments(dataset, dataset_document, documents)

            # load
            self._load(
                index_processor=index_processor, dataset=dataset, dataset_document=dataset_document, documents=documents
            )
        except DocumentIsPausedError:
            raise DocumentIsPausedError("Document paused, document id: {}".format(dataset_document.id))
        except ProviderTokenNotInitError as e:
            dataset_document.indexing_status = "error"
            dataset_document.error = str(e.description)
            dataset_document.stopped_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
            db.session.commit()
        except Exception as e:
            logging.exception("consume document failed")
            dataset_document.indexing_status = "error"
            dataset_document.error = str(e)
            dataset_document.stopped_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
            db.session.commit()

    def run_in_indexing_status(self, dataset_document: DatasetDocument):
        """Run the indexing process when the index_status is indexing."""
        try:
            # get dataset
            dataset = Dataset.query.filter_by(id=dataset_document.dataset_id).first()

            if not dataset:
                raise ValueError("no dataset found")

            # get exist document_segment list and delete
            document_segments = DocumentSegment.query.filter_by(
                dataset_id=dataset.id, document_id=dataset_document.id
            ).all()

            documents = []
            if document_segments:
                for document_segment in document_segments:
                    # transform segment to node
                    if document_segment.status != "completed":
                        document = Document(
                            page_content=document_segment.content,
                            metadata={
                                "doc_id": document_segment.index_node_id,
                                "doc_hash": document_segment.index_node_hash,
                                "document_id": document_segment.document_id,
                                "dataset_id": document_segment.dataset_id,
                            },
                        )
                        if dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX:
                            child_chunks = document_segment.child_chunks
                            if child_chunks:
                                child_documents = []
                                for child_chunk in child_chunks:
                                    child_document = ChildDocument(
                                        page_content=child_chunk.content,
                                        metadata={
                                            "doc_id": child_chunk.index_node_id,
                                            "doc_hash": child_chunk.index_node_hash,
                                            "document_id": document_segment.document_id,
                                            "dataset_id": document_segment.dataset_id,
                                        },
                                    )
                                    child_documents.append(child_document)
                                document.children = child_documents
                        documents.append(document)

            # build index
            # get the process rule
            processing_rule = (
                db.session.query(DatasetProcessRule)
                .filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id)
                .first()
            )

            index_type = dataset_document.doc_form
            index_processor = IndexProcessorFactory(index_type).init_index_processor()
            self._load(
                index_processor=index_processor, dataset=dataset, dataset_document=dataset_document, documents=documents
            )
        except DocumentIsPausedError:
            raise DocumentIsPausedError("Document paused, document id: {}".format(dataset_document.id))
        except ProviderTokenNotInitError as e:
            dataset_document.indexing_status = "error"
            dataset_document.error = str(e.description)
            dataset_document.stopped_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
            db.session.commit()
        except Exception as e:
            logging.exception("consume document failed")
            dataset_document.indexing_status = "error"
            dataset_document.error = str(e)
            dataset_document.stopped_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
            db.session.commit()

    def indexing_estimate(
        self,
        tenant_id: str,
        extract_settings: list[ExtractSetting],
        tmp_processing_rule: dict,
        doc_form: Optional[str] = None,
        doc_language: str = "English",
        dataset_id: Optional[str] = None,
        indexing_technique: str = "economy",
    ) -> IndexingEstimate:
        """
        Estimate the indexing for the document.
        """
        # check document limit
        features = FeatureService.get_features(tenant_id)
        if features.billing.enabled:
            count = len(extract_settings)
            batch_upload_limit = dify_config.BATCH_UPLOAD_LIMIT
            if count > batch_upload_limit:
                raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")

        embedding_model_instance = None
        if dataset_id:
            dataset = Dataset.query.filter_by(id=dataset_id).first()
            if not dataset:
                raise ValueError("Dataset not found.")
            if dataset.indexing_technique == "high_quality" or indexing_technique == "high_quality":
                if dataset.embedding_model_provider:
                    embedding_model_instance = self.model_manager.get_model_instance(
                        tenant_id=tenant_id,
                        provider=dataset.embedding_model_provider,
                        model_type=ModelType.TEXT_EMBEDDING,
                        model=dataset.embedding_model,
                    )
                else:
                    embedding_model_instance = self.model_manager.get_default_model_instance(
                        tenant_id=tenant_id,
                        model_type=ModelType.TEXT_EMBEDDING,
                    )
        else:
            if indexing_technique == "high_quality":
                embedding_model_instance = self.model_manager.get_default_model_instance(
                    tenant_id=tenant_id,
                    model_type=ModelType.TEXT_EMBEDDING,
                )
        preview_texts = []  # type: ignore

        total_segments = 0
        index_type = doc_form
        index_processor = IndexProcessorFactory(index_type).init_index_processor()
        for extract_setting in extract_settings:
            # extract
            processing_rule = DatasetProcessRule(
                mode=tmp_processing_rule["mode"], rules=json.dumps(tmp_processing_rule["rules"])
            )
            text_docs = index_processor.extract(extract_setting, process_rule_mode=tmp_processing_rule["mode"])
            documents = index_processor.transform(
                text_docs,
                embedding_model_instance=embedding_model_instance,
                process_rule=processing_rule.to_dict(),
                tenant_id=current_user.current_tenant_id,
                doc_language=doc_language,
                preview=True,
            )
            total_segments += len(documents)
            for document in documents:
                if len(preview_texts) < 10:
                    if doc_form and doc_form == "qa_model":
                        preview_detail = QAPreviewDetail(
                            question=document.page_content, answer=document.metadata.get("answer") or ""
                        )
                        preview_texts.append(preview_detail)
                    else:
                        preview_detail = PreviewDetail(content=document.page_content)  # type: ignore
                        if document.children:
                            preview_detail.child_chunks = [child.page_content for child in document.children]  # type: ignore
                        preview_texts.append(preview_detail)

                # delete image files and related db records
                image_upload_file_ids = get_image_upload_file_ids(document.page_content)
                for upload_file_id in image_upload_file_ids:
                    image_file = db.session.query(UploadFile).filter(UploadFile.id == upload_file_id).first()
                    try:
                        if image_file:
                            storage.delete(image_file.key)
                    except Exception:
                        logging.exception(
                            "Delete image_files failed while indexing_estimate, \
                                          image_upload_file_is: {}".format(upload_file_id)
                        )
                    db.session.delete(image_file)

        if doc_form and doc_form == "qa_model":
            return IndexingEstimate(total_segments=total_segments * 20, qa_preview=preview_texts, preview=[])
        return IndexingEstimate(total_segments=total_segments, preview=preview_texts)  # type: ignore

    def _extract(
        self, index_processor: BaseIndexProcessor, dataset_document: DatasetDocument, process_rule: dict
    ) -> list[Document]:
        # load file
        if dataset_document.data_source_type not in {"upload_file", "notion_import", "website_crawl"}:
            return []

        data_source_info = dataset_document.data_source_info_dict
        text_docs = []
        if dataset_document.data_source_type == "upload_file":
            if not data_source_info or "upload_file_id" not in data_source_info:
                raise ValueError("no upload file found")

            file_detail = (
                db.session.query(UploadFile).filter(UploadFile.id == data_source_info["upload_file_id"]).one_or_none()
            )

            if file_detail:
                extract_setting = ExtractSetting(
                    datasource_type="upload_file", upload_file=file_detail, document_model=dataset_document.doc_form
                )
                text_docs = index_processor.extract(extract_setting, process_rule_mode=process_rule["mode"])
        elif dataset_document.data_source_type == "notion_import":
            if (
                not data_source_info
                or "notion_workspace_id" not in data_source_info
                or "notion_page_id" not in data_source_info
            ):
                raise ValueError("no notion import info found")
            extract_setting = ExtractSetting(
                datasource_type="notion_import",
                notion_info={
                    "notion_workspace_id": data_source_info["notion_workspace_id"],
                    "notion_obj_id": data_source_info["notion_page_id"],
                    "notion_page_type": data_source_info["type"],
                    "document": dataset_document,
                    "tenant_id": dataset_document.tenant_id,
                },
                document_model=dataset_document.doc_form,
            )
            text_docs = index_processor.extract(extract_setting, process_rule_mode=process_rule["mode"])
        elif dataset_document.data_source_type == "website_crawl":
            if (
                not data_source_info
                or "provider" not in data_source_info
                or "url" not in data_source_info
                or "job_id" not in data_source_info
            ):
                raise ValueError("no website import info found")
            extract_setting = ExtractSetting(
                datasource_type="website_crawl",
                website_info={
                    "provider": data_source_info["provider"],
                    "job_id": data_source_info["job_id"],
                    "tenant_id": dataset_document.tenant_id,
                    "url": data_source_info["url"],
                    "mode": data_source_info["mode"],
                    "only_main_content": data_source_info["only_main_content"],
                },
                document_model=dataset_document.doc_form,
            )
            text_docs = index_processor.extract(extract_setting, process_rule_mode=process_rule["mode"])
        # update document status to splitting
        self._update_document_index_status(
            document_id=dataset_document.id,
            after_indexing_status="splitting",
            extra_update_params={
                DatasetDocument.word_count: sum(len(text_doc.page_content) for text_doc in text_docs),
                DatasetDocument.parsing_completed_at: datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
            },
        )

        # replace doc id to document model id
        text_docs = cast(list[Document], text_docs)
        for text_doc in text_docs:
            if text_doc.metadata is not None:
                text_doc.metadata["document_id"] = dataset_document.id
                text_doc.metadata["dataset_id"] = dataset_document.dataset_id

        return text_docs

    @staticmethod
    def filter_string(text):
        text = re.sub(r"<\|", "<", text)
        text = re.sub(r"\|>", ">", text)
        text = re.sub(r"[\x00-\x08\x0B\x0C\x0E-\x1F\x7F\xEF\xBF\xBE]", "", text)
        # Unicode  U+FFFE
        text = re.sub("\ufffe", "", text)
        return text

    @staticmethod
    def _get_splitter(
        processing_rule_mode: str,
        max_tokens: int,
        chunk_overlap: int,
        separator: str,
        embedding_model_instance: Optional[ModelInstance],
    ) -> TextSplitter:
        """
        Get the NodeParser object according to the processing rule.
        """
        if processing_rule_mode in ["custom", "hierarchical"]:
            # The user-defined segmentation rule
            max_segmentation_tokens_length = dify_config.INDEXING_MAX_SEGMENTATION_TOKENS_LENGTH
            if max_tokens < 50 or max_tokens > max_segmentation_tokens_length:
                raise ValueError(f"Custom segment length should be between 50 and {max_segmentation_tokens_length}.")

            if separator:
                separator = separator.replace("\\n", "\n")

            character_splitter = FixedRecursiveCharacterTextSplitter.from_encoder(
                chunk_size=max_tokens,
                chunk_overlap=chunk_overlap,
                fixed_separator=separator,
                separators=["\n\n", "。", ". ", " ", ""],
                embedding_model_instance=embedding_model_instance,
            )
        else:
            # Automatic segmentation
            automatic_rules: dict[str, Any] = dict(DatasetProcessRule.AUTOMATIC_RULES["segmentation"])
            character_splitter = EnhanceRecursiveCharacterTextSplitter.from_encoder(
                chunk_size=automatic_rules["max_tokens"],
                chunk_overlap=automatic_rules["chunk_overlap"],
                separators=["\n\n", "。", ". ", " ", ""],
                embedding_model_instance=embedding_model_instance,
            )

        return character_splitter  # type: ignore

    def _split_to_documents_for_estimate(
        self, text_docs: list[Document], splitter: TextSplitter, processing_rule: DatasetProcessRule
    ) -> list[Document]:
        """
        Split the text documents into nodes.
        """
        all_documents: list[Document] = []
        for text_doc in text_docs:
            # document clean
            document_text = self._document_clean(text_doc.page_content, processing_rule)
            text_doc.page_content = document_text

            # parse document to nodes
            documents = splitter.split_documents([text_doc])

            split_documents = []
            for document in documents:
                if document.page_content is None or not document.page_content.strip():
                    continue
                if document.metadata is not None:
                    doc_id = str(uuid.uuid4())
                    hash = helper.generate_text_hash(document.page_content)
                    document.metadata["doc_id"] = doc_id
                    document.metadata["doc_hash"] = hash

                split_documents.append(document)

            all_documents.extend(split_documents)

        return all_documents

    @staticmethod
    def _document_clean(text: str, processing_rule: DatasetProcessRule) -> str:
        """
        Clean the document text according to the processing rules.
        """
        if processing_rule.mode == "automatic":
            rules = DatasetProcessRule.AUTOMATIC_RULES
        else:
            rules = json.loads(processing_rule.rules) if processing_rule.rules else {}
        document_text = CleanProcessor.clean(text, {"rules": rules})

        return document_text

    @staticmethod
    def format_split_text(text: str) -> list[QAPreviewDetail]:
        regex = r"Q\d+:\s*(.*?)\s*A\d+:\s*([\s\S]*?)(?=Q\d+:|$)"
        matches = re.findall(regex, text, re.UNICODE)

        return [QAPreviewDetail(question=q, answer=re.sub(r"\n\s*", "\n", a.strip())) for q, a in matches if q and a]

    def _load(
        self,
        index_processor: BaseIndexProcessor,
        dataset: Dataset,
        dataset_document: DatasetDocument,
        documents: list[Document],
    ) -> None:
        """
        insert index and update document/segment status to completed
        """

        embedding_model_instance = None
        if dataset.indexing_technique == "high_quality":
            embedding_model_instance = self.model_manager.get_model_instance(
                tenant_id=dataset.tenant_id,
                provider=dataset.embedding_model_provider,
                model_type=ModelType.TEXT_EMBEDDING,
                model=dataset.embedding_model,
            )

        # chunk nodes by chunk size
        indexing_start_at = time.perf_counter()
        tokens = 0
        if dataset_document.doc_form != IndexType.PARENT_CHILD_INDEX:
            # create keyword index
            create_keyword_thread = threading.Thread(
                target=self._process_keyword_index,
                args=(current_app._get_current_object(), dataset.id, dataset_document.id, documents),  # type: ignore
            )
            create_keyword_thread.start()

        max_workers = 10
        if dataset.indexing_technique == "high_quality":
            with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
                futures = []

                # Distribute documents into multiple groups based on the hash values of page_content
                # This is done to prevent multiple threads from processing the same document,
                # Thereby avoiding potential database insertion deadlocks
                document_groups: list[list[Document]] = [[] for _ in range(max_workers)]
                for document in documents:
                    hash = helper.generate_text_hash(document.page_content)
                    group_index = int(hash, 16) % max_workers
                    document_groups[group_index].append(document)
                for chunk_documents in document_groups:
                    if len(chunk_documents) == 0:
                        continue
                    futures.append(
                        executor.submit(
                            self._process_chunk,
                            current_app._get_current_object(),  # type: ignore
                            index_processor,
                            chunk_documents,
                            dataset,
                            dataset_document,
                            embedding_model_instance,
                        )
                    )

                for future in futures:
                    tokens += future.result()
        if dataset_document.doc_form != IndexType.PARENT_CHILD_INDEX:
            create_keyword_thread.join()
        indexing_end_at = time.perf_counter()

        # update document status to completed
        self._update_document_index_status(
            document_id=dataset_document.id,
            after_indexing_status="completed",
            extra_update_params={
                DatasetDocument.tokens: tokens,
                DatasetDocument.completed_at: datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
                DatasetDocument.indexing_latency: indexing_end_at - indexing_start_at,
                DatasetDocument.error: None,
            },
        )

    @staticmethod
    def _process_keyword_index(flask_app, dataset_id, document_id, documents):
        with flask_app.app_context():
            dataset = Dataset.query.filter_by(id=dataset_id).first()
            if not dataset:
                raise ValueError("no dataset found")
            keyword = Keyword(dataset)
            keyword.create(documents)
            if dataset.indexing_technique != "high_quality":
                document_ids = [document.metadata["doc_id"] for document in documents]
                db.session.query(DocumentSegment).filter(
                    DocumentSegment.document_id == document_id,
                    DocumentSegment.dataset_id == dataset_id,
                    DocumentSegment.index_node_id.in_(document_ids),
                    DocumentSegment.status == "indexing",
                ).update(
                    {
                        DocumentSegment.status: "completed",
                        DocumentSegment.enabled: True,
                        DocumentSegment.completed_at: datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
                    }
                )

                db.session.commit()

    def _process_chunk(
        self, flask_app, index_processor, chunk_documents, dataset, dataset_document, embedding_model_instance
    ):
        with flask_app.app_context():
            # check document is paused
            self._check_document_paused_status(dataset_document.id)

            tokens = 0
            if embedding_model_instance:
                tokens += sum(
                    embedding_model_instance.get_text_embedding_num_tokens([document.page_content])
                    for document in chunk_documents
                )

            # load index
            index_processor.load(dataset, chunk_documents, with_keywords=False)

            document_ids = [document.metadata["doc_id"] for document in chunk_documents]
            db.session.query(DocumentSegment).filter(
                DocumentSegment.document_id == dataset_document.id,
                DocumentSegment.dataset_id == dataset.id,
                DocumentSegment.index_node_id.in_(document_ids),
                DocumentSegment.status == "indexing",
            ).update(
                {
                    DocumentSegment.status: "completed",
                    DocumentSegment.enabled: True,
                    DocumentSegment.completed_at: datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
                }
            )

            db.session.commit()

            return tokens

    @staticmethod
    def _check_document_paused_status(document_id: str):
        indexing_cache_key = "document_{}_is_paused".format(document_id)
        result = redis_client.get(indexing_cache_key)
        if result:
            raise DocumentIsPausedError()

    @staticmethod
    def _update_document_index_status(
        document_id: str, after_indexing_status: str, extra_update_params: Optional[dict] = None
    ) -> None:
        """
        Update the document indexing status.
        """
        count = DatasetDocument.query.filter_by(id=document_id, is_paused=True).count()
        if count > 0:
            raise DocumentIsPausedError()
        document = DatasetDocument.query.filter_by(id=document_id).first()
        if not document:
            raise DocumentIsDeletedPausedError()

        update_params = {DatasetDocument.indexing_status: after_indexing_status}

        if extra_update_params:
            update_params.update(extra_update_params)

        DatasetDocument.query.filter_by(id=document_id).update(update_params)
        db.session.commit()

    @staticmethod
    def _update_segments_by_document(dataset_document_id: str, update_params: dict) -> None:
        """
        Update the document segment by document id.
        """
        DocumentSegment.query.filter_by(document_id=dataset_document_id).update(update_params)
        db.session.commit()

    def _transform(
        self,
        index_processor: BaseIndexProcessor,
        dataset: Dataset,
        text_docs: list[Document],
        doc_language: str,
        process_rule: dict,
    ) -> list[Document]:
        # get embedding model instance
        embedding_model_instance = None
        if dataset.indexing_technique == "high_quality":
            if dataset.embedding_model_provider:
                embedding_model_instance = self.model_manager.get_model_instance(
                    tenant_id=dataset.tenant_id,
                    provider=dataset.embedding_model_provider,
                    model_type=ModelType.TEXT_EMBEDDING,
                    model=dataset.embedding_model,
                )
            else:
                embedding_model_instance = self.model_manager.get_default_model_instance(
                    tenant_id=dataset.tenant_id,
                    model_type=ModelType.TEXT_EMBEDDING,
                )

        documents = index_processor.transform(
            text_docs,
            embedding_model_instance=embedding_model_instance,
            process_rule=process_rule,
            tenant_id=dataset.tenant_id,
            doc_language=doc_language,
        )

        return documents

    def _load_segments(self, dataset, dataset_document, documents):
        # save node to document segment
        doc_store = DatasetDocumentStore(
            dataset=dataset, user_id=dataset_document.created_by, document_id=dataset_document.id
        )

        # add document segments
        doc_store.add_documents(docs=documents, save_child=dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX)

        # update document status to indexing
        cur_time = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
        self._update_document_index_status(
            document_id=dataset_document.id,
            after_indexing_status="indexing",
            extra_update_params={
                DatasetDocument.cleaning_completed_at: cur_time,
                DatasetDocument.splitting_completed_at: cur_time,
            },
        )

        # update segment status to indexing
        self._update_segments_by_document(
            dataset_document_id=dataset_document.id,
            update_params={
                DocumentSegment.status: "indexing",
                DocumentSegment.indexing_at: datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
            },
        )
        pass


class DocumentIsPausedError(Exception):
    pass


class DocumentIsDeletedPausedError(Exception):
    pass