File size: 22,707 Bytes
f71c799
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
import json

from flask import request
from flask_restful import marshal, reqparse  # type: ignore
from sqlalchemy import desc
from werkzeug.exceptions import NotFound

import services.dataset_service
from controllers.common.errors import FilenameNotExistsError
from controllers.service_api import api
from controllers.service_api.app.error import (
    FileTooLargeError,
    NoFileUploadedError,
    ProviderNotInitializeError,
    TooManyFilesError,
    UnsupportedFileTypeError,
)
from controllers.service_api.dataset.error import (
    ArchivedDocumentImmutableError,
    DocumentIndexingError,
    InvalidMetadataError,
)
from controllers.service_api.wraps import DatasetApiResource, cloud_edition_billing_resource_check
from core.errors.error import ProviderTokenNotInitError
from extensions.ext_database import db
from fields.document_fields import document_fields, document_status_fields
from libs.login import current_user
from models.dataset import Dataset, Document, DocumentSegment
from services.dataset_service import DocumentService
from services.entities.knowledge_entities.knowledge_entities import KnowledgeConfig
from services.file_service import FileService


class DocumentAddByTextApi(DatasetApiResource):
    """Resource for documents."""

    @cloud_edition_billing_resource_check("vector_space", "dataset")
    @cloud_edition_billing_resource_check("documents", "dataset")
    def post(self, tenant_id, dataset_id):
        """Create document by text."""
        parser = reqparse.RequestParser()
        parser.add_argument("name", type=str, required=True, nullable=False, location="json")
        parser.add_argument("text", type=str, required=True, nullable=False, location="json")
        parser.add_argument("process_rule", type=dict, required=False, nullable=True, location="json")
        parser.add_argument("original_document_id", type=str, required=False, location="json")
        parser.add_argument("doc_form", type=str, default="text_model", required=False, nullable=False, location="json")
        parser.add_argument(
            "doc_language", type=str, default="English", required=False, nullable=False, location="json"
        )
        parser.add_argument(
            "indexing_technique", type=str, choices=Dataset.INDEXING_TECHNIQUE_LIST, nullable=False, location="json"
        )
        parser.add_argument("retrieval_model", type=dict, required=False, nullable=False, location="json")
        parser.add_argument("doc_type", type=str, required=False, nullable=True, location="json")
        parser.add_argument("doc_metadata", type=dict, required=False, nullable=True, location="json")

        args = parser.parse_args()
        dataset_id = str(dataset_id)
        tenant_id = str(tenant_id)
        dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()

        if not dataset:
            raise ValueError("Dataset is not exist.")

        if not dataset.indexing_technique and not args["indexing_technique"]:
            raise ValueError("indexing_technique is required.")

        # Validate metadata if provided
        if args.get("doc_type") or args.get("doc_metadata"):
            if not args.get("doc_type") or not args.get("doc_metadata"):
                raise InvalidMetadataError("Both doc_type and doc_metadata must be provided when adding metadata")

            if args["doc_type"] not in DocumentService.DOCUMENT_METADATA_SCHEMA:
                raise InvalidMetadataError(
                    "Invalid doc_type. Must be one of: " + ", ".join(DocumentService.DOCUMENT_METADATA_SCHEMA.keys())
                )

            if not isinstance(args["doc_metadata"], dict):
                raise InvalidMetadataError("doc_metadata must be a dictionary")

            # Validate metadata schema based on doc_type
            if args["doc_type"] != "others":
                metadata_schema = DocumentService.DOCUMENT_METADATA_SCHEMA[args["doc_type"]]
                for key, value in args["doc_metadata"].items():
                    if key in metadata_schema and not isinstance(value, metadata_schema[key]):
                        raise InvalidMetadataError(f"Invalid type for metadata field {key}")
            # set to MetaDataConfig
            args["metadata"] = {"doc_type": args["doc_type"], "doc_metadata": args["doc_metadata"]}

        text = args.get("text")
        name = args.get("name")
        if text is None or name is None:
            raise ValueError("Both 'text' and 'name' must be non-null values.")

        upload_file = FileService.upload_text(text=str(text), text_name=str(name))
        data_source = {
            "type": "upload_file",
            "info_list": {"data_source_type": "upload_file", "file_info_list": {"file_ids": [upload_file.id]}},
        }
        args["data_source"] = data_source
        knowledge_config = KnowledgeConfig(**args)
        # validate args
        DocumentService.document_create_args_validate(knowledge_config)

        try:
            documents, batch = DocumentService.save_document_with_dataset_id(
                dataset=dataset,
                knowledge_config=knowledge_config,
                account=current_user,
                dataset_process_rule=dataset.latest_process_rule if "process_rule" not in args else None,
                created_from="api",
            )
        except ProviderTokenNotInitError as ex:
            raise ProviderNotInitializeError(ex.description)
        document = documents[0]

        documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": batch}
        return documents_and_batch_fields, 200


class DocumentUpdateByTextApi(DatasetApiResource):
    """Resource for update documents."""

    @cloud_edition_billing_resource_check("vector_space", "dataset")
    def post(self, tenant_id, dataset_id, document_id):
        """Update document by text."""
        parser = reqparse.RequestParser()
        parser.add_argument("name", type=str, required=False, nullable=True, location="json")
        parser.add_argument("text", type=str, required=False, nullable=True, location="json")
        parser.add_argument("process_rule", type=dict, required=False, nullable=True, location="json")
        parser.add_argument("doc_form", type=str, default="text_model", required=False, nullable=False, location="json")
        parser.add_argument(
            "doc_language", type=str, default="English", required=False, nullable=False, location="json"
        )
        parser.add_argument("retrieval_model", type=dict, required=False, nullable=False, location="json")
        parser.add_argument("doc_type", type=str, required=False, nullable=True, location="json")
        parser.add_argument("doc_metadata", type=dict, required=False, nullable=True, location="json")
        args = parser.parse_args()
        dataset_id = str(dataset_id)
        tenant_id = str(tenant_id)
        dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()

        if not dataset:
            raise ValueError("Dataset is not exist.")

        # indexing_technique is already set in dataset since this is an update
        args["indexing_technique"] = dataset.indexing_technique

        # Validate metadata if provided
        if args.get("doc_type") or args.get("doc_metadata"):
            if not args.get("doc_type") or not args.get("doc_metadata"):
                raise InvalidMetadataError("Both doc_type and doc_metadata must be provided when adding metadata")

            if args["doc_type"] not in DocumentService.DOCUMENT_METADATA_SCHEMA:
                raise InvalidMetadataError(
                    "Invalid doc_type. Must be one of: " + ", ".join(DocumentService.DOCUMENT_METADATA_SCHEMA.keys())
                )

            if not isinstance(args["doc_metadata"], dict):
                raise InvalidMetadataError("doc_metadata must be a dictionary")

            # Validate metadata schema based on doc_type
            if args["doc_type"] != "others":
                metadata_schema = DocumentService.DOCUMENT_METADATA_SCHEMA[args["doc_type"]]
                for key, value in args["doc_metadata"].items():
                    if key in metadata_schema and not isinstance(value, metadata_schema[key]):
                        raise InvalidMetadataError(f"Invalid type for metadata field {key}")

            # set to MetaDataConfig
            args["metadata"] = {"doc_type": args["doc_type"], "doc_metadata": args["doc_metadata"]}

        if args["text"]:
            text = args.get("text")
            name = args.get("name")
            if text is None or name is None:
                raise ValueError("Both text and name must be strings.")
            upload_file = FileService.upload_text(text=str(text), text_name=str(name))
            data_source = {
                "type": "upload_file",
                "info_list": {"data_source_type": "upload_file", "file_info_list": {"file_ids": [upload_file.id]}},
            }
            args["data_source"] = data_source
        # validate args
        args["original_document_id"] = str(document_id)
        knowledge_config = KnowledgeConfig(**args)
        DocumentService.document_create_args_validate(knowledge_config)

        try:
            documents, batch = DocumentService.save_document_with_dataset_id(
                dataset=dataset,
                knowledge_config=knowledge_config,
                account=current_user,
                dataset_process_rule=dataset.latest_process_rule if "process_rule" not in args else None,
                created_from="api",
            )
        except ProviderTokenNotInitError as ex:
            raise ProviderNotInitializeError(ex.description)
        document = documents[0]

        documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": batch}
        return documents_and_batch_fields, 200


class DocumentAddByFileApi(DatasetApiResource):
    """Resource for documents."""

    @cloud_edition_billing_resource_check("vector_space", "dataset")
    @cloud_edition_billing_resource_check("documents", "dataset")
    def post(self, tenant_id, dataset_id):
        """Create document by upload file."""
        args = {}
        if "data" in request.form:
            args = json.loads(request.form["data"])
        if "doc_form" not in args:
            args["doc_form"] = "text_model"
        if "doc_language" not in args:
            args["doc_language"] = "English"

        # Validate metadata if provided
        if args.get("doc_type") or args.get("doc_metadata"):
            if not args.get("doc_type") or not args.get("doc_metadata"):
                raise InvalidMetadataError("Both doc_type and doc_metadata must be provided when adding metadata")

            if args["doc_type"] not in DocumentService.DOCUMENT_METADATA_SCHEMA:
                raise InvalidMetadataError(
                    "Invalid doc_type. Must be one of: " + ", ".join(DocumentService.DOCUMENT_METADATA_SCHEMA.keys())
                )

            if not isinstance(args["doc_metadata"], dict):
                raise InvalidMetadataError("doc_metadata must be a dictionary")

            # Validate metadata schema based on doc_type
            if args["doc_type"] != "others":
                metadata_schema = DocumentService.DOCUMENT_METADATA_SCHEMA[args["doc_type"]]
                for key, value in args["doc_metadata"].items():
                    if key in metadata_schema and not isinstance(value, metadata_schema[key]):
                        raise InvalidMetadataError(f"Invalid type for metadata field {key}")

            # set to MetaDataConfig
            args["metadata"] = {"doc_type": args["doc_type"], "doc_metadata": args["doc_metadata"]}

        # get dataset info
        dataset_id = str(dataset_id)
        tenant_id = str(tenant_id)
        dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()

        if not dataset:
            raise ValueError("Dataset is not exist.")
        if not dataset.indexing_technique and not args.get("indexing_technique"):
            raise ValueError("indexing_technique is required.")

        # save file info
        file = request.files["file"]
        # check file
        if "file" not in request.files:
            raise NoFileUploadedError()

        if len(request.files) > 1:
            raise TooManyFilesError()

        if not file.filename:
            raise FilenameNotExistsError

        upload_file = FileService.upload_file(
            filename=file.filename,
            content=file.read(),
            mimetype=file.mimetype,
            user=current_user,
            source="datasets",
        )
        data_source = {
            "type": "upload_file",
            "info_list": {"data_source_type": "upload_file", "file_info_list": {"file_ids": [upload_file.id]}},
        }
        args["data_source"] = data_source
        # validate args
        knowledge_config = KnowledgeConfig(**args)
        DocumentService.document_create_args_validate(knowledge_config)

        try:
            documents, batch = DocumentService.save_document_with_dataset_id(
                dataset=dataset,
                knowledge_config=knowledge_config,
                account=dataset.created_by_account,
                dataset_process_rule=dataset.latest_process_rule if "process_rule" not in args else None,
                created_from="api",
            )
        except ProviderTokenNotInitError as ex:
            raise ProviderNotInitializeError(ex.description)
        document = documents[0]
        documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": batch}
        return documents_and_batch_fields, 200


class DocumentUpdateByFileApi(DatasetApiResource):
    """Resource for update documents."""

    @cloud_edition_billing_resource_check("vector_space", "dataset")
    def post(self, tenant_id, dataset_id, document_id):
        """Update document by upload file."""
        args = {}
        if "data" in request.form:
            args = json.loads(request.form["data"])
        if "doc_form" not in args:
            args["doc_form"] = "text_model"
        if "doc_language" not in args:
            args["doc_language"] = "English"

        # Validate metadata if provided
        if args.get("doc_type") or args.get("doc_metadata"):
            if not args.get("doc_type") or not args.get("doc_metadata"):
                raise InvalidMetadataError("Both doc_type and doc_metadata must be provided when adding metadata")

            if args["doc_type"] not in DocumentService.DOCUMENT_METADATA_SCHEMA:
                raise InvalidMetadataError(
                    "Invalid doc_type. Must be one of: " + ", ".join(DocumentService.DOCUMENT_METADATA_SCHEMA.keys())
                )

            if not isinstance(args["doc_metadata"], dict):
                raise InvalidMetadataError("doc_metadata must be a dictionary")

            # Validate metadata schema based on doc_type
            if args["doc_type"] != "others":
                metadata_schema = DocumentService.DOCUMENT_METADATA_SCHEMA[args["doc_type"]]
                for key, value in args["doc_metadata"].items():
                    if key in metadata_schema and not isinstance(value, metadata_schema[key]):
                        raise InvalidMetadataError(f"Invalid type for metadata field {key}")

            # set to MetaDataConfig
            args["metadata"] = {"doc_type": args["doc_type"], "doc_metadata": args["doc_metadata"]}

        # get dataset info
        dataset_id = str(dataset_id)
        tenant_id = str(tenant_id)
        dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()

        if not dataset:
            raise ValueError("Dataset is not exist.")
        if "file" in request.files:
            # save file info
            file = request.files["file"]

            if len(request.files) > 1:
                raise TooManyFilesError()

            if not file.filename:
                raise FilenameNotExistsError

            try:
                upload_file = FileService.upload_file(
                    filename=file.filename,
                    content=file.read(),
                    mimetype=file.mimetype,
                    user=current_user,
                    source="datasets",
                )
            except services.errors.file.FileTooLargeError as file_too_large_error:
                raise FileTooLargeError(file_too_large_error.description)
            except services.errors.file.UnsupportedFileTypeError:
                raise UnsupportedFileTypeError()
            data_source = {
                "type": "upload_file",
                "info_list": {"data_source_type": "upload_file", "file_info_list": {"file_ids": [upload_file.id]}},
            }
            args["data_source"] = data_source
        # validate args
        args["original_document_id"] = str(document_id)

        knowledge_config = KnowledgeConfig(**args)
        DocumentService.document_create_args_validate(knowledge_config)

        try:
            documents, batch = DocumentService.save_document_with_dataset_id(
                dataset=dataset,
                knowledge_config=knowledge_config,
                account=dataset.created_by_account,
                dataset_process_rule=dataset.latest_process_rule if "process_rule" not in args else None,
                created_from="api",
            )
        except ProviderTokenNotInitError as ex:
            raise ProviderNotInitializeError(ex.description)
        document = documents[0]
        documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": document.batch}
        return documents_and_batch_fields, 200


class DocumentDeleteApi(DatasetApiResource):
    def delete(self, tenant_id, dataset_id, document_id):
        """Delete document."""
        document_id = str(document_id)
        dataset_id = str(dataset_id)
        tenant_id = str(tenant_id)

        # get dataset info
        dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()

        if not dataset:
            raise ValueError("Dataset is not exist.")

        document = DocumentService.get_document(dataset.id, document_id)

        # 404 if document not found
        if document is None:
            raise NotFound("Document Not Exists.")

        # 403 if document is archived
        if DocumentService.check_archived(document):
            raise ArchivedDocumentImmutableError()

        try:
            # delete document
            DocumentService.delete_document(document)
        except services.errors.document.DocumentIndexingError:
            raise DocumentIndexingError("Cannot delete document during indexing.")

        return {"result": "success"}, 200


class DocumentListApi(DatasetApiResource):
    def get(self, tenant_id, dataset_id):
        dataset_id = str(dataset_id)
        tenant_id = str(tenant_id)
        page = request.args.get("page", default=1, type=int)
        limit = request.args.get("limit", default=20, type=int)
        search = request.args.get("keyword", default=None, type=str)
        dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
        if not dataset:
            raise NotFound("Dataset not found.")

        query = Document.query.filter_by(dataset_id=str(dataset_id), tenant_id=tenant_id)

        if search:
            search = f"%{search}%"
            query = query.filter(Document.name.like(search))

        query = query.order_by(desc(Document.created_at))

        paginated_documents = query.paginate(page=page, per_page=limit, max_per_page=100, error_out=False)
        documents = paginated_documents.items

        response = {
            "data": marshal(documents, document_fields),
            "has_more": len(documents) == limit,
            "limit": limit,
            "total": paginated_documents.total,
            "page": page,
        }

        return response


class DocumentIndexingStatusApi(DatasetApiResource):
    def get(self, tenant_id, dataset_id, batch):
        dataset_id = str(dataset_id)
        batch = str(batch)
        tenant_id = str(tenant_id)
        # get dataset
        dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
        if not dataset:
            raise NotFound("Dataset not found.")
        # get documents
        documents = DocumentService.get_batch_documents(dataset_id, batch)
        if not documents:
            raise NotFound("Documents not found.")
        documents_status = []
        for document in documents:
            completed_segments = DocumentSegment.query.filter(
                DocumentSegment.completed_at.isnot(None),
                DocumentSegment.document_id == str(document.id),
                DocumentSegment.status != "re_segment",
            ).count()
            total_segments = DocumentSegment.query.filter(
                DocumentSegment.document_id == str(document.id), DocumentSegment.status != "re_segment"
            ).count()
            document.completed_segments = completed_segments
            document.total_segments = total_segments
            if document.is_paused:
                document.indexing_status = "paused"
            documents_status.append(marshal(document, document_status_fields))
        data = {"data": documents_status}
        return data


api.add_resource(
    DocumentAddByTextApi,
    "/datasets/<uuid:dataset_id>/document/create_by_text",
    "/datasets/<uuid:dataset_id>/document/create-by-text",
)
api.add_resource(
    DocumentAddByFileApi,
    "/datasets/<uuid:dataset_id>/document/create_by_file",
    "/datasets/<uuid:dataset_id>/document/create-by-file",
)
api.add_resource(
    DocumentUpdateByTextApi,
    "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update_by_text",
    "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update-by-text",
)
api.add_resource(
    DocumentUpdateByFileApi,
    "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update_by_file",
    "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update-by-file",
)
api.add_resource(DocumentDeleteApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>")
api.add_resource(DocumentListApi, "/datasets/<uuid:dataset_id>/documents")
api.add_resource(DocumentIndexingStatusApi, "/datasets/<uuid:dataset_id>/documents/<string:batch>/indexing-status")