Spaces:
Sleeping
Sleeping
Temporarily disable eval_model
Browse files
app.py
CHANGED
|
@@ -178,7 +178,7 @@ def distillation_loss(student_logits, teacher_logits, true_labels, temperature,
|
|
| 178 |
# hyperparameters
|
| 179 |
batch_size = 32
|
| 180 |
lr = 1e-4
|
| 181 |
-
num_epochs =
|
| 182 |
temperature = 2.0
|
| 183 |
alpha = 0.5
|
| 184 |
|
|
@@ -220,27 +220,27 @@ for epoch in range(num_epochs):
|
|
| 220 |
|
| 221 |
print(f"Epoch {epoch + 1} completed with loss: {loss.item()}")
|
| 222 |
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
#Compare the models
|
| 236 |
-
# create testing data loader
|
| 237 |
-
validation_dataloader = DataLoader(tokenized_data['test'], batch_size=8, collate_fn=data_collator)
|
| 238 |
-
# Evaluate the teacher model
|
| 239 |
-
teacher_accuracy, teacher_precision, teacher_recall, teacher_f1 = evaluate_model(teacher_model, validation_dataloader, device)
|
| 240 |
-
print(f"Teacher (validation) - Accuracy: {teacher_accuracy:.4f}, Precision: {teacher_precision:.4f}, Recall: {teacher_recall:.4f}, F1 Score: {teacher_f1:.4f}")
|
| 241 |
-
# Evaluate the student model
|
| 242 |
-
student_accuracy, student_precision, student_recall, student_f1 = evaluate_model(student_model, validation_dataloader, device)
|
| 243 |
-
print(f"Student (validation) - Accuracy: {student_accuracy:.4f}, Precision: {student_precision:.4f}, Recall: {student_recall:.4f}, F1 Score: {student_f1:.4f}")
|
| 244 |
|
| 245 |
|
| 246 |
st.write('Pushing model to huggingface')
|
|
|
|
| 178 |
# hyperparameters
|
| 179 |
batch_size = 32
|
| 180 |
lr = 1e-4
|
| 181 |
+
num_epochs = 30
|
| 182 |
temperature = 2.0
|
| 183 |
alpha = 0.5
|
| 184 |
|
|
|
|
| 220 |
|
| 221 |
print(f"Epoch {epoch + 1} completed with loss: {loss.item()}")
|
| 222 |
|
| 223 |
+
# # # Evaluate the teacher model
|
| 224 |
+
# # teacher_accuracy, teacher_precision, teacher_recall, teacher_f1 = evaluate_model(teacher_model, test_dataloader, device)
|
| 225 |
+
# # print(f"Teacher (test) - Accuracy: {teacher_accuracy:.4f}, Precision: {teacher_precision:.4f}, Recall: {teacher_recall:.4f}, F1 Score: {teacher_f1:.4f}")
|
| 226 |
+
|
| 227 |
+
# # # Evaluate the student model
|
| 228 |
+
# # student_accuracy, student_precision, student_recall, student_f1 = evaluate_model(student_model, test_dataloader, device)
|
| 229 |
+
# # print(f"Student (test) - Accuracy: {student_accuracy:.4f}, Precision: {student_precision:.4f}, Recall: {student_recall:.4f}, F1 Score: {student_f1:.4f}")
|
| 230 |
+
# # print("\n")
|
| 231 |
+
|
| 232 |
+
# # # put student model back into train mode
|
| 233 |
+
# # student_model.train()
|
| 234 |
+
|
| 235 |
+
# #Compare the models
|
| 236 |
+
# # create testing data loader
|
| 237 |
+
# validation_dataloader = DataLoader(tokenized_data['test'], batch_size=8, collate_fn=data_collator)
|
| 238 |
+
# # Evaluate the teacher model
|
| 239 |
+
# teacher_accuracy, teacher_precision, teacher_recall, teacher_f1 = evaluate_model(teacher_model, validation_dataloader, device)
|
| 240 |
+
# print(f"Teacher (validation) - Accuracy: {teacher_accuracy:.4f}, Precision: {teacher_precision:.4f}, Recall: {teacher_recall:.4f}, F1 Score: {teacher_f1:.4f}")
|
| 241 |
+
# # Evaluate the student model
|
| 242 |
+
# student_accuracy, student_precision, student_recall, student_f1 = evaluate_model(student_model, validation_dataloader, device)
|
| 243 |
+
# print(f"Student (validation) - Accuracy: {student_accuracy:.4f}, Precision: {student_precision:.4f}, Recall: {student_recall:.4f}, F1 Score: {student_f1:.4f}")
|
| 244 |
|
| 245 |
|
| 246 |
st.write('Pushing model to huggingface')
|