Spaces:
Sleeping
Sleeping
initial commit
Browse files- README.md +6 -6
- app.py +212 -0
- requirements.txt +14 -0
README.md
CHANGED
|
@@ -1,13 +1,13 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: streamlit
|
| 7 |
-
sdk_version: 1.40.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
-
license:
|
| 11 |
---
|
| 12 |
|
| 13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Traceforce
|
| 3 |
+
emoji: 🦀
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: gray
|
| 6 |
sdk: streamlit
|
| 7 |
+
sdk_version: 1.40.1
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
+
license: other
|
| 11 |
---
|
| 12 |
|
| 13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
# from gliner import GLiNER
|
| 3 |
+
from datasets import load_dataset
|
| 4 |
+
import evaluate
|
| 5 |
+
import numpy as np
|
| 6 |
+
import threading
|
| 7 |
+
import time
|
| 8 |
+
from peft import prepare_model_for_kbit_training
|
| 9 |
+
from peft import LoraConfig, get_peft_model, TaskType
|
| 10 |
+
import torch
|
| 11 |
+
from torch.profiler import profile, record_function, ProfilerActivity
|
| 12 |
+
from transformers import AutoModelForTokenClassification, AutoTokenizer, DataCollatorForTokenClassification, Trainer, TrainingArguments
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
seqeval = evaluate.load("seqeval")
|
| 16 |
+
|
| 17 |
+
# id2label = {0: "O"}
|
| 18 |
+
# label2id = {"O": 0}
|
| 19 |
+
# def build_id2label(examples):
|
| 20 |
+
# for i, label in enumerate(examples["mbert_token_classes"]):
|
| 21 |
+
# if label.startswith("I-") and label not in label2id:
|
| 22 |
+
# current_len = len(id2label)
|
| 23 |
+
# id2label[current_len] = label
|
| 24 |
+
# label2id[label] = current_len
|
| 25 |
+
|
| 26 |
+
print(f"Is CUDA available: {torch.cuda.is_available()}")
|
| 27 |
+
# True
|
| 28 |
+
if torch.cuda.is_available():
|
| 29 |
+
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
|
| 30 |
+
|
| 31 |
+
# Load the fine-tuned GLiNER model
|
| 32 |
+
st.write('Loading the pretrained model ...')
|
| 33 |
+
model_name = "iiiorg/piiranha-v1-detect-personal-information"
|
| 34 |
+
model = AutoModelForTokenClassification.from_pretrained(model_name)
|
| 35 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 36 |
+
|
| 37 |
+
print(model)
|
| 38 |
+
|
| 39 |
+
# Prepare model for LoRA training
|
| 40 |
+
model.train() # model in evaluation mode (dropout modules are activated)
|
| 41 |
+
# enable gradient check pointing
|
| 42 |
+
model.gradient_checkpointing_enable()
|
| 43 |
+
|
| 44 |
+
# enable quantized training
|
| 45 |
+
model = prepare_model_for_kbit_training(model)
|
| 46 |
+
|
| 47 |
+
# LoRA config
|
| 48 |
+
config = LoraConfig(
|
| 49 |
+
r=8,
|
| 50 |
+
lora_alpha=32,
|
| 51 |
+
target_modules=["query_proj"],
|
| 52 |
+
lora_dropout=0.05,
|
| 53 |
+
bias="none",
|
| 54 |
+
task_type=TaskType.TOKEN_CLS
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
# LoRA trainable version of model
|
| 58 |
+
model = get_peft_model(model, config)
|
| 59 |
+
|
| 60 |
+
print(model)
|
| 61 |
+
# trainable parameter count
|
| 62 |
+
model.print_trainable_parameters()
|
| 63 |
+
|
| 64 |
+
# # print weights
|
| 65 |
+
# pytorch_total_params = sum(p.numel() for p in model.parameters())
|
| 66 |
+
# torch_total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
| 67 |
+
# print(f'total params: {pytorch_total_params}. tunable params: {torch_total_params}')
|
| 68 |
+
|
| 69 |
+
if torch.cuda.is_available():
|
| 70 |
+
model = model.to("cuda")
|
| 71 |
+
|
| 72 |
+
# Load data.
|
| 73 |
+
raw_dataset = load_dataset("ai4privacy/pii-masking-400k", split='train[1:1000]')
|
| 74 |
+
# raw_dataset = raw_dataset.filter(lambda example: example["language"].startswith("en"))
|
| 75 |
+
raw_dataset = raw_dataset.train_test_split(test_size=0.2)
|
| 76 |
+
print(raw_dataset)
|
| 77 |
+
print(raw_dataset.column_names)
|
| 78 |
+
# raw_dataset = raw_dataset.select_columns(["mbert_tokens"])
|
| 79 |
+
# raw_dataset = raw_dataset.rename_column("mbert_tokens", "tokens")
|
| 80 |
+
# raw_dataset = raw_dataset.rename_column("mbert_token_classes", "labels")
|
| 81 |
+
|
| 82 |
+
# inputs = tokenizer(
|
| 83 |
+
# raw_dataset['train'][0]['mbert_tokens'],
|
| 84 |
+
# truncation=True,
|
| 85 |
+
# is_split_into_words=True)
|
| 86 |
+
# print(inputs)
|
| 87 |
+
# print(inputs.tokens())
|
| 88 |
+
# print(inputs.word_ids())
|
| 89 |
+
|
| 90 |
+
# Build label2id and id2label
|
| 91 |
+
st.write("Building label mappings")
|
| 92 |
+
label2id = model.config.label2id
|
| 93 |
+
id2label = model.config.id2label
|
| 94 |
+
# raw_dataset.map(
|
| 95 |
+
# build_id2label,
|
| 96 |
+
# batched=False)
|
| 97 |
+
|
| 98 |
+
st.write("id2label: ", model.config.id2label)
|
| 99 |
+
st.write("label2id: ", model.config.label2id)
|
| 100 |
+
|
| 101 |
+
# function to align labels with tokens
|
| 102 |
+
# --> special tokens: -100 label id (ignored by cross entropy),
|
| 103 |
+
# --> if tokens are inside a word, replace 'B-' with 'I-'
|
| 104 |
+
def align_labels_with_tokens(labels):
|
| 105 |
+
aligned_label_ids = []
|
| 106 |
+
aligned_label_ids.append(-100)
|
| 107 |
+
for i, label in enumerate(labels):
|
| 108 |
+
if label.startswith("B-"):
|
| 109 |
+
label = label.replace("B-", "I-")
|
| 110 |
+
aligned_label_ids.append(label2id[label])
|
| 111 |
+
aligned_label_ids.append(-100)
|
| 112 |
+
return aligned_label_ids
|
| 113 |
+
|
| 114 |
+
# create tokenize function
|
| 115 |
+
def tokenize_function(examples):
|
| 116 |
+
# tokenize and truncate text. The examples argument would have already stripped
|
| 117 |
+
# the train or test label.
|
| 118 |
+
new_labels = []
|
| 119 |
+
inputs = tokenizer(
|
| 120 |
+
examples['mbert_tokens'],
|
| 121 |
+
is_split_into_words=True,
|
| 122 |
+
padding=True,
|
| 123 |
+
truncation=True,
|
| 124 |
+
max_length=512)
|
| 125 |
+
for _, labels in enumerate(examples['mbert_token_classes']):
|
| 126 |
+
new_labels.append(align_labels_with_tokens(labels))
|
| 127 |
+
|
| 128 |
+
inputs["labels"] = new_labels
|
| 129 |
+
return inputs
|
| 130 |
+
|
| 131 |
+
# tokenize training and validation datasets
|
| 132 |
+
tokenized_data = raw_dataset.map(
|
| 133 |
+
tokenize_function,
|
| 134 |
+
batched=True)
|
| 135 |
+
# data collator
|
| 136 |
+
data_collator = DataCollatorForTokenClassification(tokenizer)
|
| 137 |
+
|
| 138 |
+
st.write(tokenized_data["train"][:2]["labels"])
|
| 139 |
+
|
| 140 |
+
import os
|
| 141 |
+
|
| 142 |
+
# Print all CUDA environment variables
|
| 143 |
+
for key, value in os.environ.items():
|
| 144 |
+
if "CUDA" in key.upper():
|
| 145 |
+
print(f"{key}={value}")
|
| 146 |
+
|
| 147 |
+
def compute_metrics(eval_preds):
|
| 148 |
+
logits, labels = eval_preds
|
| 149 |
+
predictions = np.argmax(logits, axis=-1)
|
| 150 |
+
|
| 151 |
+
# Remove ignored index (special tokens) and convert to labels
|
| 152 |
+
true_labels = [[id2label[l] for l in label if l != -100] for label in labels]
|
| 153 |
+
true_predictions = [
|
| 154 |
+
[id2label[p] for (p, l) in zip(prediction, label) if l != -100]
|
| 155 |
+
for prediction, label in zip(predictions, labels)
|
| 156 |
+
]
|
| 157 |
+
all_metrics = seqeval.compute(predictions=true_predictions, references=true_labels)
|
| 158 |
+
return {
|
| 159 |
+
"precision": all_metrics["overall_precision"],
|
| 160 |
+
"recall": all_metrics["overall_recall"],
|
| 161 |
+
"f1": all_metrics["overall_f1"],
|
| 162 |
+
"accuracy": all_metrics["overall_accuracy"],
|
| 163 |
+
}
|
| 164 |
+
|
| 165 |
+
# hyperparameters
|
| 166 |
+
lr = 2e-4
|
| 167 |
+
batch_size = 4
|
| 168 |
+
num_epochs = 4
|
| 169 |
+
output_dir = "xia-lora-deberta-v2"
|
| 170 |
+
|
| 171 |
+
# define training arguments
|
| 172 |
+
training_args = TrainingArguments(
|
| 173 |
+
output_dir= output_dir,
|
| 174 |
+
learning_rate=lr,
|
| 175 |
+
per_device_train_batch_size=batch_size,
|
| 176 |
+
per_device_eval_batch_size=batch_size,
|
| 177 |
+
num_train_epochs=num_epochs,
|
| 178 |
+
weight_decay=0.01,
|
| 179 |
+
logging_strategy="epoch",
|
| 180 |
+
evaluation_strategy="epoch",
|
| 181 |
+
save_strategy="epoch",
|
| 182 |
+
load_best_model_at_end=True,
|
| 183 |
+
gradient_accumulation_steps=4,
|
| 184 |
+
warmup_steps=2,
|
| 185 |
+
fp16=True,
|
| 186 |
+
optim="paged_adamw_8bit",
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
# configure trainer
|
| 190 |
+
trainer = Trainer(
|
| 191 |
+
model=model,
|
| 192 |
+
train_dataset=tokenized_data["train"],
|
| 193 |
+
eval_dataset=tokenized_data["test"],
|
| 194 |
+
args=training_args,
|
| 195 |
+
data_collator=data_collator,
|
| 196 |
+
compute_metrics=compute_metrics
|
| 197 |
+
)
|
| 198 |
+
|
| 199 |
+
# train model
|
| 200 |
+
model.config.use_cache = False # silence the warnings. Please re-enable for inference!
|
| 201 |
+
trainer.train()
|
| 202 |
+
|
| 203 |
+
# renable warnings
|
| 204 |
+
model.config.use_cache = True
|
| 205 |
+
|
| 206 |
+
st.write('Pushing model to huggingface')
|
| 207 |
+
|
| 208 |
+
# Push model to huggingface
|
| 209 |
+
hf_name = 'CarolXia' # your hf username or org name
|
| 210 |
+
model_id = hf_name + "/" + output_dir
|
| 211 |
+
model.push_to_hub(model_id, token=st.secrets["HUGGINGFACE_TOKEN"])
|
| 212 |
+
trainer.push_to_hub(model_id, token=st.secrets["HUGGINGFACE_TOKEN"])
|
requirements.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
auto-gptq
|
| 2 |
+
bitsandbytes
|
| 3 |
+
datasets
|
| 4 |
+
evaluate
|
| 5 |
+
seqeval
|
| 6 |
+
gliner
|
| 7 |
+
torch>=2.0.0
|
| 8 |
+
transformers>=4.38.2
|
| 9 |
+
huggingface_hub>=0.21.4
|
| 10 |
+
onnxruntime
|
| 11 |
+
optimum
|
| 12 |
+
peft
|
| 13 |
+
sentencepiece
|
| 14 |
+
tqdm
|