import gradio as gr # Ensure Gradio is correctly imported import pandas as pd import plotly.express as px from transformers import pipeline from datasets import load_dataset # Load the additional datasets deepseek_prover_v1 = load_dataset('deepseek-ai/DeepSeek-Prover-V1', split='train') cybersecurity_kg = load_dataset('CyberPeace-Institute/Cybersecurity-Knowledge-Graph', split='train') codesearchnet_pep8 = load_dataset('kejian/codesearchnet-python-pep8-v1', split='train') code_text_python = load_dataset('semeru/code-text-python', split='train') # Sample CVE data (for visualization) cve_data = { 'CVE ID': ['CVE-2023-0001', 'CVE-2023-0002', 'CVE-2023-0003', 'CVE-2023-0004', 'CVE-2023-0005'], 'Severity': ['High', 'Medium', 'Low', 'High', 'Medium'], 'Description': [ 'A critical vulnerability in the web application framework.', 'A medium-severity vulnerability in the database management system.', 'A low-severity vulnerability in the network firewall.', 'A critical vulnerability in the operating system kernel.', 'A medium-severity vulnerability in the web server.' ], 'Published Date': ['2023-01-01', '2023-01-02', '2023-01-03', '2023-01-04', '2023-01-05'] } # Convert CVE data to a DataFrame cve_df = pd.DataFrame(cve_data) # Function to filter CVEs by severity def filter_cves(severity): filtered_df = cve_df[cve_df['Severity'] == severity] return filtered_df # Function to generate a bar chart of CVEs by severity def generate_cve_chart(): fig = px.bar(cve_df, x='Severity', y='CVE ID', color='Severity', title='CVEs by Severity') return fig # Function to analyze the sentiment of a CVE description def analyze_sentiment(description): sentiment_pipeline = pipeline('sentiment-analysis') result = sentiment_pipeline(description) return result # Create the Gradio app with gr.Blocks() as demo: # Title and description gr.Markdown("# Purple Teaming Cyber Security Dashboard") gr.Markdown("This dashboard provides threat intelligence and CVEs for purple teaming.") # CVE Filter with gr.Row(): severity_filter = gr.Dropdown(choices=['High', 'Medium', 'Low'], label='Filter by Severity') cve_table = gr.Dataframe(label='CVEs', value=cve_df) # Event listener for severity filter severity_filter.change(fn=filter_cves, inputs=severity_filter, outputs=cve_table) # CVE Chart with gr.Row(): cve_chart = gr.Plot(label='CVEs by Severity') cve_chart.value = generate_cve_chart() # Directly assign the figure to the Plot component # Sentiment Analysis with gr.Row(): description_input = gr.Textbox(label='CVE Description') sentiment_output = gr.JSON(label='Sentiment Analysis') analyze_btn = gr.Button('Analyze Sentiment') # Event listener for sentiment analysis analyze_btn.click(fn=analyze_sentiment, inputs=description_input, outputs=sentiment_output) # Display additional datasets in the dashboard with gr.Tab("Datasets Overview"): gr.Markdown("## Overview of Additional Datasets") # Display datasets as dataframes with gr.Row(): gr.Dataframe(label="DeepSeek-Prover-V1", value=deepseek_prover_v1) gr.Dataframe(label="Cybersecurity Knowledge Graph", value=cybersecurity_kg) gr.Dataframe(label="Code SearchNet Python PEP8", value=codesearchnet_pep8) gr.Dataframe(label="Code Text Python", value=code_text_python) # Launch the app demo.launch(share=True)