import asyncio from pathlib import Path from typing import Dict import streamlit as st import yaml from loguru import logger as _logger from metagpt.const import METAGPT_ROOT from metagpt.ext.spo.components.optimizer import PromptOptimizer from metagpt.ext.spo.utils.llm_client import SPO_LLM, RequestType def load_yaml_template(template_path: Path) -> Dict: if template_path.exists(): with open(template_path, "r", encoding="utf-8") as f: return yaml.safe_load(f) return {"prompt": "", "requirements": "", "count": None, "qa": [{"question": "", "answer": ""}]} def save_yaml_template(template_path: Path, data: Dict) -> None: template_format = { "prompt": str(data.get("prompt", "")), "requirements": str(data.get("requirements", "")), "count": data.get("count"), "qa": [ {"question": str(qa.get("question", "")).strip(), "answer": str(qa.get("answer", "")).strip()} for qa in data.get("qa", []) ], } template_path.parent.mkdir(parents=True, exist_ok=True) with open(template_path, "w", encoding="utf-8") as f: yaml.dump(template_format, f, allow_unicode=True, sort_keys=False, default_flow_style=False, indent=2) def display_optimization_results(result_data): for result in result_data: round_num = result["round"] success = result["succeed"] prompt = result["prompt"] with st.expander(f"Round {round_num} {':white_check_mark:' if success else ':x:'}"): st.markdown("**Prompt:**") st.code(prompt, language="text") st.markdown("
", unsafe_allow_html=True) col1, col2 = st.columns(2) with col1: st.markdown(f"**Status:** {'Success ✅ ' if success else 'Failed ❌ '}") with col2: st.markdown(f"**Tokens:** {result['tokens']}") st.markdown("**Answers:**") for idx, answer in enumerate(result["answers"]): st.markdown(f"**Question {idx + 1}:**") st.text(answer["question"]) st.markdown("**Answer:**") st.text(answer["answer"]) st.markdown("---") # Summary success_count = sum(1 for r in result_data if r["succeed"]) total_rounds = len(result_data) st.markdown("### Summary") col1, col2 = st.columns(2) with col1: st.metric("Total Rounds", total_rounds) with col2: st.metric("Successful Rounds", success_count) def main(): if "optimization_results" not in st.session_state: st.session_state.optimization_results = [] st.title("SPO | Self-Supervised Prompt Optimization 🤖") # Sidebar for configurations with st.sidebar: st.header("Configuration") # Template Selection/Creation settings_path = Path("metagpt/ext/spo/settings") existing_templates = [f.stem for f in settings_path.glob("*.yaml")] template_mode = st.radio("Template Mode", ["Use Existing", "Create New"]) if template_mode == "Use Existing": template_name = st.selectbox("Select Template", existing_templates) else: template_name = st.text_input("New Template Name") if template_name and not template_name.endswith(".yaml"): template_name = f"{template_name}" # LLM Settings st.subheader("LLM Settings") base_url = st.text_input("Base URL", value="https://api.example.com") api_key = st.text_input("API Key", type="password") opt_model = st.selectbox( "Optimization Model", ["gpt-4o-mini", "gpt-4o", "deepseek-chat"], index=0 ) opt_temp = st.slider("Optimization Temperature", 0.0, 1.0, 0.7) eval_model = st.selectbox( "Evaluation Model", ["gpt-4o-mini", "gpt-4o", "deepseek-chat"], index=0 ) eval_temp = st.slider("Evaluation Temperature", 0.0, 1.0, 0.3) exec_model = st.selectbox( "Execution Model", ["gpt-4o-mini", "gpt-4o", "deepseek-chat"], index=0 ) exec_temp = st.slider("Execution Temperature", 0.0, 1.0, 0.0) # Optimizer Settings st.subheader("Optimizer Settings") initial_round = st.number_input("Initial Round", 1, 100, 1) max_rounds = st.number_input("Maximum Rounds", 1, 100, 10) # Main content area st.header("Template Configuration") if template_name: template_path = settings_path / f"{template_name}.yaml" template_data = load_yaml_template(template_path) if "current_template" not in st.session_state or st.session_state.current_template != template_name: st.session_state.current_template = template_name st.session_state.qas = template_data.get("qa", []) # Edit template sections prompt = st.text_area("Prompt", template_data.get("prompt", ""), height=100) requirements = st.text_area("Requirements", template_data.get("requirements", ""), height=100) # qa section st.subheader("Q&A Examples") # Add new qa button if st.button("Add New Q&A"): st.session_state.qas.append({"question": "", "answer": ""}) # Edit qas new_qas = [] for i in range(len(st.session_state.qas)): st.markdown(f"**QA #{i + 1}**") col1, col2, col3 = st.columns([45, 45, 10]) with col1: question = st.text_area( f"Question {i + 1}", st.session_state.qas[i].get("question", ""), key=f"q_{i}", height=100 ) with col2: answer = st.text_area( f"Answer {i + 1}", st.session_state.qas[i].get("answer", ""), key=f"a_{i}", height=100 ) with col3: if st.button("🗑️", key=f"delete_{i}"): st.session_state.qas.pop(i) st.rerun() new_qas.append({"question": question, "answer": answer}) # Save template button if st.button("Save Template"): new_template_data = {"prompt": prompt, "requirements": requirements, "count": None, "qa": new_qas} save_yaml_template(template_path, new_template_data) st.session_state.qas = new_qas st.success(f"Template saved to {template_path}") st.subheader("Current Template Preview") preview_data = {"qa": new_qas, "requirements": requirements, "prompt": prompt} st.code(yaml.dump(preview_data, allow_unicode=True), language="yaml") st.subheader("Optimization Logs") log_container = st.empty() class StreamlitSink: def write(self, message): current_logs = st.session_state.get("logs", []) current_logs.append(message.strip()) st.session_state.logs = current_logs log_container.code("\n".join(current_logs), language="plaintext") streamlit_sink = StreamlitSink() _logger.remove() def prompt_optimizer_filter(record): return "optimizer" in record["name"].lower() _logger.add( streamlit_sink.write, format="{time:YYYY-MM-DD HH:mm:ss.SSS} | {level: <8} | {name}:{function}:{line} - {message}", filter=prompt_optimizer_filter, ) _logger.add(METAGPT_ROOT / "logs/{time:YYYYMMDD}.txt", level="DEBUG") # Start optimization button if st.button("Start Optimization"): try: # Initialize LLM SPO_LLM.initialize( optimize_kwargs={"model": opt_model, "temperature": opt_temp, "base_url": base_url, "api_key": api_key}, evaluate_kwargs={"model": eval_model, "temperature": eval_temp, "base_url": base_url, "api_key": api_key}, execute_kwargs={"model": exec_model, "temperature": exec_temp, "base_url": base_url, "api_key": api_key}, ) # Create optimizer instance optimizer = PromptOptimizer( optimized_path="workspace", initial_round=initial_round, max_rounds=max_rounds, template=f"{template_name}.yaml", name=template_name, ) # Run optimization with progress bar with st.spinner("Optimizing prompts..."): optimizer.optimize() st.success("Optimization completed!") st.header("Optimization Results") prompt_path = optimizer.root_path / "prompts" result_data = optimizer.data_utils.load_results(prompt_path) st.session_state.optimization_results = result_data except Exception as e: st.error(f"An error occurred: {str(e)}") _logger.error(f"Error during optimization: {str(e)}") if st.session_state.optimization_results: st.header("Optimization Results") display_optimization_results(st.session_state.optimization_results) st.markdown("---") st.subheader("Test Optimized Prompt") col1, col2 = st.columns(2) with col1: test_prompt = st.text_area("Optimized Prompt", value="", height=200, key="test_prompt") with col2: test_question = st.text_area("Your Question", value="", height=200, key="test_question") if st.button("Test Prompt"): if test_prompt and test_question: try: with st.spinner("Generating response..."): SPO_LLM.initialize( optimize_kwargs={"model": opt_model, "temperature": opt_temp, "base_url": base_url, "api_key": api_key}, evaluate_kwargs={"model": eval_model, "temperature": eval_temp, "base_url": base_url, "api_key": api_key}, execute_kwargs={"model": exec_model, "temperature": exec_temp, "base_url": base_url, "api_key": api_key}, ) llm = SPO_LLM.get_instance() messages = [{"role": "user", "content": f"{test_prompt}\n\n{test_question}"}] async def get_response(): return await llm.responser(request_type=RequestType.EXECUTE, messages=messages) loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) try: response = loop.run_until_complete(get_response()) finally: loop.close() st.subheader("Response:") st.markdown(response) except Exception as e: st.error(f"Error generating response: {str(e)}") else: st.warning("Please enter both prompt and question.") if __name__ == "__main__": main()