Spaces:
Running
Running
#!/usr/bin/env python | |
# -*- coding: utf-8 -*- | |
""" | |
@Time : 2023/6/8 14:03 | |
@Author : alexanderwu | |
@File : document.py | |
@Desc : Classes and Operations Related to Files in the File System. | |
""" | |
from enum import Enum | |
from pathlib import Path | |
from typing import Optional, Union | |
import pandas as pd | |
from llama_index.core import Document, SimpleDirectoryReader | |
from llama_index.core.node_parser import SimpleNodeParser | |
from llama_index.readers.file import PDFReader | |
from pydantic import BaseModel, ConfigDict, Field | |
from tqdm import tqdm | |
from metagpt.logs import logger | |
from metagpt.repo_parser import RepoParser | |
def validate_cols(content_col: str, df: pd.DataFrame): | |
if content_col not in df.columns: | |
raise ValueError("Content column not found in DataFrame.") | |
def read_data(data_path: Path) -> Union[pd.DataFrame, list[Document]]: | |
suffix = data_path.suffix | |
if ".xlsx" == suffix: | |
data = pd.read_excel(data_path) | |
elif ".csv" == suffix: | |
data = pd.read_csv(data_path) | |
elif ".json" == suffix: | |
data = pd.read_json(data_path) | |
elif suffix in (".docx", ".doc"): | |
data = SimpleDirectoryReader(input_files=[str(data_path)]).load_data() | |
elif ".txt" == suffix: | |
data = SimpleDirectoryReader(input_files=[str(data_path)]).load_data() | |
node_parser = SimpleNodeParser.from_defaults(separator="\n", chunk_size=256, chunk_overlap=0) | |
data = node_parser.get_nodes_from_documents(data) | |
elif ".pdf" == suffix: | |
data = PDFReader.load_data(str(data_path)) | |
else: | |
raise NotImplementedError("File format not supported.") | |
return data | |
class DocumentStatus(Enum): | |
"""Indicates document status, a mechanism similar to RFC/PEP""" | |
DRAFT = "draft" | |
UNDERREVIEW = "underreview" | |
APPROVED = "approved" | |
DONE = "done" | |
class Document(BaseModel): | |
""" | |
Document: Handles operations related to document files. | |
""" | |
path: Path = Field(default=None) | |
name: str = Field(default="") | |
content: str = Field(default="") | |
# metadata? in content perhaps. | |
author: str = Field(default="") | |
status: DocumentStatus = Field(default=DocumentStatus.DRAFT) | |
reviews: list = Field(default_factory=list) | |
def from_path(cls, path: Path): | |
""" | |
Create a Document instance from a file path. | |
""" | |
if not path.exists(): | |
raise FileNotFoundError(f"File {path} not found.") | |
content = path.read_text() | |
return cls(content=content, path=path) | |
def from_text(cls, text: str, path: Optional[Path] = None): | |
""" | |
Create a Document from a text string. | |
""" | |
return cls(content=text, path=path) | |
def to_path(self, path: Optional[Path] = None): | |
""" | |
Save content to the specified file path. | |
""" | |
if path is not None: | |
self.path = path | |
if self.path is None: | |
raise ValueError("File path is not set.") | |
self.path.parent.mkdir(parents=True, exist_ok=True) | |
# TODO: excel, csv, json, etc. | |
self.path.write_text(self.content, encoding="utf-8") | |
def persist(self): | |
""" | |
Persist document to disk. | |
""" | |
return self.to_path() | |
class IndexableDocument(Document): | |
""" | |
Advanced document handling: For vector databases or search engines. | |
""" | |
model_config = ConfigDict(arbitrary_types_allowed=True) | |
data: Union[pd.DataFrame, list] | |
content_col: Optional[str] = Field(default="") | |
meta_col: Optional[str] = Field(default="") | |
def from_path(cls, data_path: Path, content_col="content", meta_col="metadata"): | |
if not data_path.exists(): | |
raise FileNotFoundError(f"File {data_path} not found.") | |
data = read_data(data_path) | |
if isinstance(data, pd.DataFrame): | |
validate_cols(content_col, data) | |
return cls(data=data, content=str(data), content_col=content_col, meta_col=meta_col) | |
try: | |
content = data_path.read_text() | |
except Exception as e: | |
logger.debug(f"Load {str(data_path)} error: {e}") | |
content = "" | |
return cls(data=data, content=content, content_col=content_col, meta_col=meta_col) | |
def _get_docs_and_metadatas_by_df(self) -> (list, list): | |
df = self.data | |
docs = [] | |
metadatas = [] | |
for i in tqdm(range(len(df))): | |
docs.append(df[self.content_col].iloc[i]) | |
if self.meta_col: | |
metadatas.append({self.meta_col: df[self.meta_col].iloc[i]}) | |
else: | |
metadatas.append({}) | |
return docs, metadatas | |
def _get_docs_and_metadatas_by_llamaindex(self) -> (list, list): | |
data = self.data | |
docs = [i.text for i in data] | |
metadatas = [i.metadata for i in data] | |
return docs, metadatas | |
def get_docs_and_metadatas(self) -> (list, list): | |
if isinstance(self.data, pd.DataFrame): | |
return self._get_docs_and_metadatas_by_df() | |
elif isinstance(self.data, list): | |
return self._get_docs_and_metadatas_by_llamaindex() | |
else: | |
raise NotImplementedError("Data type not supported for metadata extraction.") | |
class RepoMetadata(BaseModel): | |
name: str = Field(default="") | |
n_docs: int = Field(default=0) | |
n_chars: int = Field(default=0) | |
symbols: list = Field(default_factory=list) | |
class Repo(BaseModel): | |
# Name of this repo. | |
name: str = Field(default="") | |
# metadata: RepoMetadata = Field(default=RepoMetadata) | |
docs: dict[Path, Document] = Field(default_factory=dict) | |
codes: dict[Path, Document] = Field(default_factory=dict) | |
assets: dict[Path, Document] = Field(default_factory=dict) | |
path: Path = Field(default=None) | |
def _path(self, filename): | |
return self.path / filename | |
def from_path(cls, path: Path): | |
"""Load documents, code, and assets from a repository path.""" | |
path.mkdir(parents=True, exist_ok=True) | |
repo = Repo(path=path, name=path.name) | |
for file_path in path.rglob("*"): | |
# FIXME: These judgments are difficult to support multiple programming languages and need to be more general | |
if file_path.is_file() and file_path.suffix in [".json", ".txt", ".md", ".py", ".js", ".css", ".html"]: | |
repo._set(file_path.read_text(), file_path) | |
return repo | |
def to_path(self): | |
"""Persist all documents, code, and assets to the given repository path.""" | |
for doc in self.docs.values(): | |
doc.to_path() | |
for code in self.codes.values(): | |
code.to_path() | |
for asset in self.assets.values(): | |
asset.to_path() | |
def _set(self, content: str, path: Path): | |
"""Add a document to the appropriate category based on its file extension.""" | |
suffix = path.suffix | |
doc = Document(content=content, path=path, name=str(path.relative_to(self.path))) | |
# FIXME: These judgments are difficult to support multiple programming languages and need to be more general | |
if suffix.lower() == ".md": | |
self.docs[path] = doc | |
elif suffix.lower() in [".py", ".js", ".css", ".html"]: | |
self.codes[path] = doc | |
else: | |
self.assets[path] = doc | |
return doc | |
def set(self, filename: str, content: str): | |
"""Set a document and persist it to disk.""" | |
path = self._path(filename) | |
doc = self._set(content, path) | |
doc.to_path() | |
def get(self, filename: str) -> Optional[Document]: | |
"""Get a document by its filename.""" | |
path = self._path(filename) | |
return self.docs.get(path) or self.codes.get(path) or self.assets.get(path) | |
def get_text_documents(self) -> list[Document]: | |
return list(self.docs.values()) + list(self.codes.values()) | |
def eda(self) -> RepoMetadata: | |
n_docs = sum(len(i) for i in [self.docs, self.codes, self.assets]) | |
n_chars = sum(sum(len(j.content) for j in i.values()) for i in [self.docs, self.codes, self.assets]) | |
symbols = RepoParser(base_directory=self.path).generate_symbols() | |
return RepoMetadata(name=self.name, n_docs=n_docs, n_chars=n_chars, symbols=symbols) | |