SPO / metagpt /document.py
XiangJinYu's picture
add metagpt
fe5c39d verified
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
@Time : 2023/6/8 14:03
@Author : alexanderwu
@File : document.py
@Desc : Classes and Operations Related to Files in the File System.
"""
from enum import Enum
from pathlib import Path
from typing import Optional, Union
import pandas as pd
from llama_index.core import Document, SimpleDirectoryReader
from llama_index.core.node_parser import SimpleNodeParser
from llama_index.readers.file import PDFReader
from pydantic import BaseModel, ConfigDict, Field
from tqdm import tqdm
from metagpt.logs import logger
from metagpt.repo_parser import RepoParser
def validate_cols(content_col: str, df: pd.DataFrame):
if content_col not in df.columns:
raise ValueError("Content column not found in DataFrame.")
def read_data(data_path: Path) -> Union[pd.DataFrame, list[Document]]:
suffix = data_path.suffix
if ".xlsx" == suffix:
data = pd.read_excel(data_path)
elif ".csv" == suffix:
data = pd.read_csv(data_path)
elif ".json" == suffix:
data = pd.read_json(data_path)
elif suffix in (".docx", ".doc"):
data = SimpleDirectoryReader(input_files=[str(data_path)]).load_data()
elif ".txt" == suffix:
data = SimpleDirectoryReader(input_files=[str(data_path)]).load_data()
node_parser = SimpleNodeParser.from_defaults(separator="\n", chunk_size=256, chunk_overlap=0)
data = node_parser.get_nodes_from_documents(data)
elif ".pdf" == suffix:
data = PDFReader.load_data(str(data_path))
else:
raise NotImplementedError("File format not supported.")
return data
class DocumentStatus(Enum):
"""Indicates document status, a mechanism similar to RFC/PEP"""
DRAFT = "draft"
UNDERREVIEW = "underreview"
APPROVED = "approved"
DONE = "done"
class Document(BaseModel):
"""
Document: Handles operations related to document files.
"""
path: Path = Field(default=None)
name: str = Field(default="")
content: str = Field(default="")
# metadata? in content perhaps.
author: str = Field(default="")
status: DocumentStatus = Field(default=DocumentStatus.DRAFT)
reviews: list = Field(default_factory=list)
@classmethod
def from_path(cls, path: Path):
"""
Create a Document instance from a file path.
"""
if not path.exists():
raise FileNotFoundError(f"File {path} not found.")
content = path.read_text()
return cls(content=content, path=path)
@classmethod
def from_text(cls, text: str, path: Optional[Path] = None):
"""
Create a Document from a text string.
"""
return cls(content=text, path=path)
def to_path(self, path: Optional[Path] = None):
"""
Save content to the specified file path.
"""
if path is not None:
self.path = path
if self.path is None:
raise ValueError("File path is not set.")
self.path.parent.mkdir(parents=True, exist_ok=True)
# TODO: excel, csv, json, etc.
self.path.write_text(self.content, encoding="utf-8")
def persist(self):
"""
Persist document to disk.
"""
return self.to_path()
class IndexableDocument(Document):
"""
Advanced document handling: For vector databases or search engines.
"""
model_config = ConfigDict(arbitrary_types_allowed=True)
data: Union[pd.DataFrame, list]
content_col: Optional[str] = Field(default="")
meta_col: Optional[str] = Field(default="")
@classmethod
def from_path(cls, data_path: Path, content_col="content", meta_col="metadata"):
if not data_path.exists():
raise FileNotFoundError(f"File {data_path} not found.")
data = read_data(data_path)
if isinstance(data, pd.DataFrame):
validate_cols(content_col, data)
return cls(data=data, content=str(data), content_col=content_col, meta_col=meta_col)
try:
content = data_path.read_text()
except Exception as e:
logger.debug(f"Load {str(data_path)} error: {e}")
content = ""
return cls(data=data, content=content, content_col=content_col, meta_col=meta_col)
def _get_docs_and_metadatas_by_df(self) -> (list, list):
df = self.data
docs = []
metadatas = []
for i in tqdm(range(len(df))):
docs.append(df[self.content_col].iloc[i])
if self.meta_col:
metadatas.append({self.meta_col: df[self.meta_col].iloc[i]})
else:
metadatas.append({})
return docs, metadatas
def _get_docs_and_metadatas_by_llamaindex(self) -> (list, list):
data = self.data
docs = [i.text for i in data]
metadatas = [i.metadata for i in data]
return docs, metadatas
def get_docs_and_metadatas(self) -> (list, list):
if isinstance(self.data, pd.DataFrame):
return self._get_docs_and_metadatas_by_df()
elif isinstance(self.data, list):
return self._get_docs_and_metadatas_by_llamaindex()
else:
raise NotImplementedError("Data type not supported for metadata extraction.")
class RepoMetadata(BaseModel):
name: str = Field(default="")
n_docs: int = Field(default=0)
n_chars: int = Field(default=0)
symbols: list = Field(default_factory=list)
class Repo(BaseModel):
# Name of this repo.
name: str = Field(default="")
# metadata: RepoMetadata = Field(default=RepoMetadata)
docs: dict[Path, Document] = Field(default_factory=dict)
codes: dict[Path, Document] = Field(default_factory=dict)
assets: dict[Path, Document] = Field(default_factory=dict)
path: Path = Field(default=None)
def _path(self, filename):
return self.path / filename
@classmethod
def from_path(cls, path: Path):
"""Load documents, code, and assets from a repository path."""
path.mkdir(parents=True, exist_ok=True)
repo = Repo(path=path, name=path.name)
for file_path in path.rglob("*"):
# FIXME: These judgments are difficult to support multiple programming languages and need to be more general
if file_path.is_file() and file_path.suffix in [".json", ".txt", ".md", ".py", ".js", ".css", ".html"]:
repo._set(file_path.read_text(), file_path)
return repo
def to_path(self):
"""Persist all documents, code, and assets to the given repository path."""
for doc in self.docs.values():
doc.to_path()
for code in self.codes.values():
code.to_path()
for asset in self.assets.values():
asset.to_path()
def _set(self, content: str, path: Path):
"""Add a document to the appropriate category based on its file extension."""
suffix = path.suffix
doc = Document(content=content, path=path, name=str(path.relative_to(self.path)))
# FIXME: These judgments are difficult to support multiple programming languages and need to be more general
if suffix.lower() == ".md":
self.docs[path] = doc
elif suffix.lower() in [".py", ".js", ".css", ".html"]:
self.codes[path] = doc
else:
self.assets[path] = doc
return doc
def set(self, filename: str, content: str):
"""Set a document and persist it to disk."""
path = self._path(filename)
doc = self._set(content, path)
doc.to_path()
def get(self, filename: str) -> Optional[Document]:
"""Get a document by its filename."""
path = self._path(filename)
return self.docs.get(path) or self.codes.get(path) or self.assets.get(path)
def get_text_documents(self) -> list[Document]:
return list(self.docs.values()) + list(self.codes.values())
def eda(self) -> RepoMetadata:
n_docs = sum(len(i) for i in [self.docs, self.codes, self.assets])
n_chars = sum(sum(len(j.content) for j in i.values()) for i in [self.docs, self.codes, self.assets])
symbols = RepoParser(base_directory=self.path).generate_symbols()
return RepoMetadata(name=self.name, n_docs=n_docs, n_chars=n_chars, symbols=symbols)