Spaces:
Running
Running
File size: 5,969 Bytes
fe5c39d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
@Time : 2023/8/7
@Author : mashenquan
@File : assistant.py
@Desc : I am attempting to incorporate certain symbol concepts from UML into MetaGPT, enabling it to have the
ability to freely construct flows through symbol concatenation. Simultaneously, I am also striving to
make these symbols configurable and standardized, making the process of building flows more convenient.
For more about `fork` node in activity diagrams, see: `https://www.uml-diagrams.org/activity-diagrams.html`
This file defines a `fork` style meta role capable of generating arbitrary roles at runtime based on a
configuration file.
@Modified By: mashenquan, 2023/8/22. A definition has been provided for the return value of _think: returning false
indicates that further reasoning cannot continue.
"""
from enum import Enum
from pathlib import Path
from typing import Optional
from pydantic import Field
from metagpt.actions.skill_action import ArgumentsParingAction, SkillAction
from metagpt.actions.talk_action import TalkAction
from metagpt.learn.skill_loader import SkillsDeclaration
from metagpt.logs import logger
from metagpt.memory.brain_memory import BrainMemory
from metagpt.roles import Role
from metagpt.schema import Message
class MessageType(Enum):
Talk = "TALK"
Skill = "SKILL"
class Assistant(Role):
"""Assistant for solving common issues."""
name: str = "Lily"
profile: str = "An assistant"
goal: str = "Help to solve problem"
constraints: str = "Talk in {language}"
desc: str = ""
memory: BrainMemory = Field(default_factory=BrainMemory)
skills: Optional[SkillsDeclaration] = None
def __init__(self, **kwargs):
super().__init__(**kwargs)
language = kwargs.get("language") or self.context.kwargs.language
self.constraints = self.constraints.format(language=language)
async def think(self) -> bool:
"""Everything will be done part by part."""
last_talk = await self.refine_memory()
if not last_talk:
return False
if not self.skills:
skill_path = Path(self.context.kwargs.SKILL_PATH) if self.context.kwargs.SKILL_PATH else None
self.skills = await SkillsDeclaration.load(skill_yaml_file_name=skill_path)
prompt = ""
skills = self.skills.get_skill_list(context=self.context)
for desc, name in skills.items():
prompt += f"If the text explicitly want you to {desc}, return `[SKILL]: {name}` brief and clear. For instance: [SKILL]: {name}\n"
prompt += 'Otherwise, return `[TALK]: {talk}` brief and clear. For instance: if {talk} is "xxxx" return [TALK]: xxxx\n\n'
prompt += f"Now what specific action is explicitly mentioned in the text: {last_talk}\n"
rsp = await self.llm.aask(prompt, ["You are an action classifier"], stream=False)
logger.info(f"THINK: {prompt}\n, THINK RESULT: {rsp}\n")
return await self._plan(rsp, last_talk=last_talk)
async def act(self) -> Message:
result = await self.rc.todo.run()
if not result:
return None
if isinstance(result, str):
msg = Message(content=result, role="assistant", cause_by=self.rc.todo)
elif isinstance(result, Message):
msg = result
else:
msg = Message(content=result.content, instruct_content=result.instruct_content, cause_by=type(self.rc.todo))
self.memory.add_answer(msg)
return msg
async def talk(self, text):
self.memory.add_talk(Message(content=text))
async def _plan(self, rsp: str, **kwargs) -> bool:
skill, text = BrainMemory.extract_info(input_string=rsp)
handlers = {
MessageType.Talk.value: self.talk_handler,
MessageType.Skill.value: self.skill_handler,
}
handler = handlers.get(skill, self.talk_handler)
return await handler(text, **kwargs)
async def talk_handler(self, text, **kwargs) -> bool:
history = self.memory.history_text
text = kwargs.get("last_talk") or text
self.set_todo(
TalkAction(i_context=text, knowledge=self.memory.get_knowledge(), history_summary=history, llm=self.llm)
)
return True
async def skill_handler(self, text, **kwargs) -> bool:
last_talk = kwargs.get("last_talk")
skill = self.skills.get_skill(text)
if not skill:
logger.info(f"skill not found: {text}")
return await self.talk_handler(text=last_talk, **kwargs)
action = ArgumentsParingAction(skill=skill, llm=self.llm, ask=last_talk)
await action.run(**kwargs)
if action.args is None:
return await self.talk_handler(text=last_talk, **kwargs)
self.set_todo(SkillAction(skill=skill, args=action.args, llm=self.llm, name=skill.name, desc=skill.description))
return True
async def refine_memory(self) -> str:
last_talk = self.memory.pop_last_talk()
if last_talk is None: # No user feedback, unsure if past conversation is finished.
return None
if not self.memory.is_history_available:
return last_talk
history_summary = await self.memory.summarize(max_words=800, keep_language=True, llm=self.llm)
if last_talk and await self.memory.is_related(text1=last_talk, text2=history_summary, llm=self.llm):
# Merge relevant content.
merged = await self.memory.rewrite(sentence=last_talk, context=history_summary, llm=self.llm)
return f"{merged} {last_talk}"
return last_talk
def get_memory(self) -> str:
return self.memory.model_dump_json()
def load_memory(self, m):
try:
self.memory = BrainMemory(**m)
except Exception as e:
logger.exception(f"load error:{e}, data:{m}")
|