File size: 5,969 Bytes
fe5c39d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
@Time    : 2023/8/7
@Author  : mashenquan
@File    : assistant.py
@Desc   : I am attempting to incorporate certain symbol concepts from UML into MetaGPT, enabling it to have the
            ability to freely construct flows through symbol concatenation. Simultaneously, I am also striving to
            make these symbols configurable and standardized, making the process of building flows more convenient.
            For more about `fork` node in activity diagrams, see: `https://www.uml-diagrams.org/activity-diagrams.html`
          This file defines a `fork` style meta role capable of generating arbitrary roles at runtime based on a
            configuration file.
@Modified By: mashenquan, 2023/8/22. A definition has been provided for the return value of _think: returning false
            indicates that further reasoning cannot continue.

"""
from enum import Enum
from pathlib import Path
from typing import Optional

from pydantic import Field

from metagpt.actions.skill_action import ArgumentsParingAction, SkillAction
from metagpt.actions.talk_action import TalkAction
from metagpt.learn.skill_loader import SkillsDeclaration
from metagpt.logs import logger
from metagpt.memory.brain_memory import BrainMemory
from metagpt.roles import Role
from metagpt.schema import Message


class MessageType(Enum):
    Talk = "TALK"
    Skill = "SKILL"


class Assistant(Role):
    """Assistant for solving common issues."""

    name: str = "Lily"
    profile: str = "An assistant"
    goal: str = "Help to solve problem"
    constraints: str = "Talk in {language}"
    desc: str = ""
    memory: BrainMemory = Field(default_factory=BrainMemory)
    skills: Optional[SkillsDeclaration] = None

    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        language = kwargs.get("language") or self.context.kwargs.language
        self.constraints = self.constraints.format(language=language)

    async def think(self) -> bool:
        """Everything will be done part by part."""
        last_talk = await self.refine_memory()
        if not last_talk:
            return False
        if not self.skills:
            skill_path = Path(self.context.kwargs.SKILL_PATH) if self.context.kwargs.SKILL_PATH else None
            self.skills = await SkillsDeclaration.load(skill_yaml_file_name=skill_path)

        prompt = ""
        skills = self.skills.get_skill_list(context=self.context)
        for desc, name in skills.items():
            prompt += f"If the text explicitly want you to {desc}, return `[SKILL]: {name}` brief and clear. For instance: [SKILL]: {name}\n"
        prompt += 'Otherwise, return `[TALK]: {talk}` brief and clear. For instance: if {talk} is "xxxx" return [TALK]: xxxx\n\n'
        prompt += f"Now what specific action is explicitly mentioned in the text: {last_talk}\n"
        rsp = await self.llm.aask(prompt, ["You are an action classifier"], stream=False)
        logger.info(f"THINK: {prompt}\n, THINK RESULT: {rsp}\n")
        return await self._plan(rsp, last_talk=last_talk)

    async def act(self) -> Message:
        result = await self.rc.todo.run()
        if not result:
            return None
        if isinstance(result, str):
            msg = Message(content=result, role="assistant", cause_by=self.rc.todo)
        elif isinstance(result, Message):
            msg = result
        else:
            msg = Message(content=result.content, instruct_content=result.instruct_content, cause_by=type(self.rc.todo))
        self.memory.add_answer(msg)
        return msg

    async def talk(self, text):
        self.memory.add_talk(Message(content=text))

    async def _plan(self, rsp: str, **kwargs) -> bool:
        skill, text = BrainMemory.extract_info(input_string=rsp)
        handlers = {
            MessageType.Talk.value: self.talk_handler,
            MessageType.Skill.value: self.skill_handler,
        }
        handler = handlers.get(skill, self.talk_handler)
        return await handler(text, **kwargs)

    async def talk_handler(self, text, **kwargs) -> bool:
        history = self.memory.history_text
        text = kwargs.get("last_talk") or text
        self.set_todo(
            TalkAction(i_context=text, knowledge=self.memory.get_knowledge(), history_summary=history, llm=self.llm)
        )
        return True

    async def skill_handler(self, text, **kwargs) -> bool:
        last_talk = kwargs.get("last_talk")
        skill = self.skills.get_skill(text)
        if not skill:
            logger.info(f"skill not found: {text}")
            return await self.talk_handler(text=last_talk, **kwargs)
        action = ArgumentsParingAction(skill=skill, llm=self.llm, ask=last_talk)
        await action.run(**kwargs)
        if action.args is None:
            return await self.talk_handler(text=last_talk, **kwargs)
        self.set_todo(SkillAction(skill=skill, args=action.args, llm=self.llm, name=skill.name, desc=skill.description))
        return True

    async def refine_memory(self) -> str:
        last_talk = self.memory.pop_last_talk()
        if last_talk is None:  # No user feedback, unsure if past conversation is finished.
            return None
        if not self.memory.is_history_available:
            return last_talk
        history_summary = await self.memory.summarize(max_words=800, keep_language=True, llm=self.llm)
        if last_talk and await self.memory.is_related(text1=last_talk, text2=history_summary, llm=self.llm):
            # Merge relevant content.
            merged = await self.memory.rewrite(sentence=last_talk, context=history_summary, llm=self.llm)
            return f"{merged} {last_talk}"

        return last_talk

    def get_memory(self) -> str:
        return self.memory.model_dump_json()

    def load_memory(self, m):
        try:
            self.memory = BrainMemory(**m)
        except Exception as e:
            logger.exception(f"load error:{e}, data:{m}")