CananD commited on
Commit
00601c4
·
verified ·
1 Parent(s): fff5f36

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +34 -0
app.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import pipeline
3
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
4
+ import torch
5
+ import numpy as np
6
+ # Load sentiment analysis model
7
+ @st.cache_resource
8
+ def load_model():
9
+ model_name = "distilbert-base-uncased-finetuned-sst-2-english"
10
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
11
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
12
+ return pipeline('sentiment-analysis', model=model, tokenizer=tokenizer)
13
+
14
+ classifier = load_model()
15
+
16
+ # Streamlit UI
17
+ st.title("Sentiment Analysis App")
18
+ st.header("Analyze Text Sentiment")
19
+
20
+ user_input = st.text_area("Enter text to analyze:", "I love using Hugging face! It's awesome.")
21
+
22
+ if st.button("Analyze"):
23
+ if user_input:
24
+ result = classifier(user_input)
25
+ sentiment = result[0]['label']
26
+ confidence = result[0]['score']
27
+
28
+ st.subheader("Result:")
29
+ if sentiment == 'POSITIVE':
30
+ st.success(f"Positive sentiment (confidence: {confidence:.2%})")
31
+ else:
32
+ st.error(f"Negative sentiment (confidence: {confidence:.2%})")
33
+ else:
34
+ st.warning("Please enter some text to analyze!")