Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import pipeline | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
import torch | |
import numpy as np | |
# Load sentiment analysis model | |
def load_model(): | |
model_name = "distilbert-base-uncased-finetuned-sst-2-english" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
return pipeline('sentiment-analysis', model=model, tokenizer=tokenizer) | |
classifier = load_model() | |
# Streamlit UI | |
st.title("Sentiment Analysis App") | |
st.header("Analyze Text Sentiment") | |
user_input = st.text_area("Enter text to analyze:", "I love studying NLP! It's awesome.") | |
if st.button("Analyze"): | |
if user_input: | |
result = classifier(user_input) | |
sentiment = result[0]['label'] | |
confidence = result[0]['score'] | |
st.subheader("Result:") | |
if sentiment == 'POSITIVE': | |
st.success(f"Positive sentiment (confidence: {confidence:.2%})") | |
else: | |
st.error(f"Negative sentiment (confidence: {confidence:.2%})") | |
else: | |
st.warning("Please enter some text to analyze!") |