Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,7 +6,8 @@ import tempfile
|
|
| 6 |
import pandas as pd
|
| 7 |
import requests
|
| 8 |
from bs4 import BeautifulSoup
|
| 9 |
-
from transformers import
|
|
|
|
| 10 |
import torch
|
| 11 |
import whisper
|
| 12 |
from moviepy.editor import VideoFileClip
|
|
@@ -15,6 +16,7 @@ import fitz
|
|
| 15 |
import docx
|
| 16 |
import yt_dlp
|
| 17 |
from functools import lru_cache
|
|
|
|
| 18 |
|
| 19 |
# Configure logging
|
| 20 |
logging.basicConfig(
|
|
@@ -44,7 +46,6 @@ class ModelManager:
|
|
| 44 |
def initialize_models(self):
|
| 45 |
"""Initialize models with optimized settings"""
|
| 46 |
try:
|
| 47 |
-
# Get HuggingFace token
|
| 48 |
HUGGINGFACE_TOKEN = os.environ.get('HUGGINGFACE_TOKEN')
|
| 49 |
if not HUGGINGFACE_TOKEN:
|
| 50 |
raise ValueError("HUGGINGFACE_TOKEN environment variable not set")
|
|
@@ -60,28 +61,45 @@ class ModelManager:
|
|
| 60 |
use_fast=True,
|
| 61 |
model_max_length=512
|
| 62 |
)
|
| 63 |
-
if self.tokenizer is None:
|
| 64 |
-
raise RuntimeError("Failed to initialize tokenizer")
|
| 65 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 66 |
|
| 67 |
-
#
|
| 68 |
-
logger.info("Loading model...")
|
| 69 |
-
|
| 70 |
-
model_name,
|
| 71 |
token=HUGGINGFACE_TOKEN,
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
)
|
| 78 |
-
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
-
# Create
|
| 82 |
logger.info("Creating pipeline...")
|
| 83 |
-
self.news_generator =
|
| 84 |
-
"text-generation",
|
| 85 |
model=self.model,
|
| 86 |
tokenizer=self.tokenizer,
|
| 87 |
device_map="auto",
|
|
@@ -94,18 +112,15 @@ class ModelManager:
|
|
| 94 |
num_return_sequences=1,
|
| 95 |
early_stopping=True
|
| 96 |
)
|
| 97 |
-
if self.news_generator is None:
|
| 98 |
-
raise RuntimeError("Failed to initialize news generator pipeline")
|
| 99 |
|
| 100 |
# Load Whisper model with optimized settings
|
| 101 |
logger.info("Loading Whisper model...")
|
| 102 |
self.whisper_model = whisper.load_model(
|
| 103 |
"tiny",
|
| 104 |
device="cuda",
|
| 105 |
-
download_root="/tmp/whisper"
|
|
|
|
| 106 |
)
|
| 107 |
-
if self.whisper_model is None:
|
| 108 |
-
raise RuntimeError("Failed to initialize Whisper model")
|
| 109 |
|
| 110 |
logger.info("All models initialized successfully")
|
| 111 |
return True
|
|
@@ -118,21 +133,31 @@ class ModelManager:
|
|
| 118 |
def reset_models(self):
|
| 119 |
"""Reset all models and clear GPU memory"""
|
| 120 |
try:
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
|
| 126 |
self.tokenizer = None
|
| 127 |
self.model = None
|
| 128 |
self.news_generator = None
|
| 129 |
self.whisper_model = None
|
| 130 |
|
| 131 |
-
# Clear CUDA cache
|
| 132 |
if torch.cuda.is_available():
|
| 133 |
torch.cuda.empty_cache()
|
| 134 |
torch.cuda.synchronize()
|
| 135 |
|
|
|
|
|
|
|
| 136 |
except Exception as e:
|
| 137 |
logger.error(f"Error during model reset: {str(e)}")
|
| 138 |
|
|
@@ -150,12 +175,7 @@ class ModelManager:
|
|
| 150 |
# Create global model manager instance
|
| 151 |
model_manager = ModelManager()
|
| 152 |
|
| 153 |
-
|
| 154 |
-
try:
|
| 155 |
-
model_manager.initialize_models()
|
| 156 |
-
except Exception as e:
|
| 157 |
-
logger.error(f"Initial model initialization failed: {str(e)}")
|
| 158 |
-
|
| 159 |
def download_social_media_video(url):
|
| 160 |
"""Download a video from social media."""
|
| 161 |
ydl_opts = {
|
|
@@ -206,7 +226,6 @@ def preprocess_audio(audio_file):
|
|
| 206 |
def transcribe_audio(file):
|
| 207 |
"""Transcribe an audio or video file."""
|
| 208 |
try:
|
| 209 |
-
# Get initialized models
|
| 210 |
_, _, _, whisper_model = model_manager.get_models()
|
| 211 |
|
| 212 |
if isinstance(file, str) and file.startswith('http'):
|
|
@@ -232,6 +251,7 @@ def transcribe_audio(file):
|
|
| 232 |
logger.error(f"Error transcribing: {str(e)}")
|
| 233 |
return f"Error processing the file: {str(e)}"
|
| 234 |
|
|
|
|
| 235 |
def read_document(document_path):
|
| 236 |
"""Read the content of a document."""
|
| 237 |
try:
|
|
@@ -251,6 +271,7 @@ def read_document(document_path):
|
|
| 251 |
logger.error(f"Error reading document: {str(e)}")
|
| 252 |
return f"Error reading document: {str(e)}"
|
| 253 |
|
|
|
|
| 254 |
def read_url(url):
|
| 255 |
"""Read the content of a URL."""
|
| 256 |
try:
|
|
@@ -283,10 +304,8 @@ def process_social_content(url):
|
|
| 283 |
@spaces.GPU(duration=120)
|
| 284 |
def generate_news(instructions, facts, size, tone, *args):
|
| 285 |
try:
|
| 286 |
-
# Get initialized models
|
| 287 |
tokenizer, _, news_generator, _ = model_manager.get_models()
|
| 288 |
|
| 289 |
-
# Initialize knowledge base
|
| 290 |
knowledge_base = {
|
| 291 |
"instructions": instructions,
|
| 292 |
"facts": facts,
|
|
@@ -296,7 +315,6 @@ def generate_news(instructions, facts, size, tone, *args):
|
|
| 296 |
"social_content": []
|
| 297 |
}
|
| 298 |
|
| 299 |
-
# Parse arguments
|
| 300 |
num_audios = 5 * 3
|
| 301 |
num_social_urls = 3 * 3
|
| 302 |
num_urls = 5
|
|
@@ -306,21 +324,18 @@ def generate_news(instructions, facts, size, tone, *args):
|
|
| 306 |
urls = args[num_audios+num_social_urls:num_audios+num_social_urls+num_urls]
|
| 307 |
documents = args[num_audios+num_social_urls+num_urls:]
|
| 308 |
|
| 309 |
-
# Process URLs
|
| 310 |
for url in urls:
|
| 311 |
if url:
|
| 312 |
content = read_url(url)
|
| 313 |
if content and not content.startswith("Error"):
|
| 314 |
knowledge_base["url_content"].append(content)
|
| 315 |
|
| 316 |
-
# Process documents
|
| 317 |
for document in documents:
|
| 318 |
if document is not None:
|
| 319 |
content = read_document(document.name)
|
| 320 |
if content and not content.startswith("Error"):
|
| 321 |
knowledge_base["document_content"].append(content)
|
| 322 |
|
| 323 |
-
# Process audio files
|
| 324 |
for i in range(0, len(audios), 3):
|
| 325 |
audio_file, name, position = audios[i:i+3]
|
| 326 |
if audio_file is not None:
|
|
@@ -330,7 +345,6 @@ def generate_news(instructions, facts, size, tone, *args):
|
|
| 330 |
"position": position
|
| 331 |
})
|
| 332 |
|
| 333 |
-
# Process social media content
|
| 334 |
for i in range(0, len(social_urls), 3):
|
| 335 |
social_url, social_name, social_context = social_urls[i:i+3]
|
| 336 |
if social_url:
|
|
@@ -344,7 +358,6 @@ def generate_news(instructions, facts, size, tone, *args):
|
|
| 344 |
"video": social_content["video"]
|
| 345 |
})
|
| 346 |
|
| 347 |
-
# Build transcriptions
|
| 348 |
transcriptions_text = ""
|
| 349 |
raw_transcriptions = ""
|
| 350 |
|
|
@@ -367,7 +380,7 @@ def generate_news(instructions, facts, size, tone, *args):
|
|
| 367 |
document_content = "\n\n".join(knowledge_base["document_content"])
|
| 368 |
url_content = "\n\n".join(knowledge_base["url_content"])
|
| 369 |
|
| 370 |
-
|
| 371 |
prompt = f"""[INST] You are a professional news writer. Write a news article based on the following information:
|
| 372 |
|
| 373 |
Instructions: {knowledge_base["instructions"]}
|
|
@@ -394,40 +407,45 @@ Follow these requirements:
|
|
| 394 |
|
| 395 |
# Generate article with optimized settings
|
| 396 |
with torch.inference_mode():
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 411 |
|
| 412 |
return news_article, raw_transcriptions
|
| 413 |
|
| 414 |
except Exception as e:
|
| 415 |
logger.error(f"Error generating news: {str(e)}")
|
| 416 |
try:
|
|
|
|
| 417 |
model_manager.reset_models()
|
| 418 |
model_manager.initialize_models()
|
| 419 |
-
logger.info("Models reinitialized successfully")
|
| 420 |
except Exception as reinit_error:
|
| 421 |
logger.error(f"Failed to reinitialize models: {str(reinit_error)}")
|
| 422 |
return f"Error generating the news article: {str(e)}", ""
|
| 423 |
-
|
| 424 |
def create_demo():
|
| 425 |
with gr.Blocks() as demo:
|
| 426 |
gr.Markdown("## Generador de noticias todo en uno")
|
| 427 |
|
| 428 |
-
# Contenedor principal con dos columnas
|
| 429 |
with gr.Row():
|
| 430 |
-
# Columna izquierda - Formulario principal
|
| 431 |
with gr.Column(scale=2):
|
| 432 |
instrucciones = gr.Textbox(
|
| 433 |
label="Instrucciones para la noticia",
|
|
@@ -447,14 +465,10 @@ def create_demo():
|
|
| 447 |
value="neutral"
|
| 448 |
)
|
| 449 |
|
| 450 |
-
# Columna derecha - Tabs y campos
|
| 451 |
with gr.Column(scale=3):
|
| 452 |
-
# Lista de inputs que empezamos a construir
|
| 453 |
inputs_list = [instrucciones, hechos, tamaño, tono]
|
| 454 |
|
| 455 |
-
# Tabs en la parte superior
|
| 456 |
with gr.Tabs():
|
| 457 |
-
# Audio/Video tabs
|
| 458 |
for i in range(1, 6):
|
| 459 |
with gr.TabItem(f"Audio/Video {i}"):
|
| 460 |
file = gr.File(
|
|
@@ -471,7 +485,6 @@ def create_demo():
|
|
| 471 |
)
|
| 472 |
inputs_list.extend([file, nombre, cargo])
|
| 473 |
|
| 474 |
-
# Redes Sociales tabs
|
| 475 |
for i in range(1, 4):
|
| 476 |
with gr.TabItem(f"Red Social {i}"):
|
| 477 |
social_url = gr.Textbox(
|
|
@@ -487,7 +500,6 @@ def create_demo():
|
|
| 487 |
)
|
| 488 |
inputs_list.extend([social_url, social_nombre, social_contexto])
|
| 489 |
|
| 490 |
-
# URL tabs
|
| 491 |
for i in range(1, 6):
|
| 492 |
with gr.TabItem(f"URL {i}"):
|
| 493 |
url = gr.Textbox(
|
|
@@ -496,7 +508,6 @@ def create_demo():
|
|
| 496 |
)
|
| 497 |
inputs_list.append(url)
|
| 498 |
|
| 499 |
-
# Documento tabs
|
| 500 |
for i in range(1, 6):
|
| 501 |
with gr.TabItem(f"Documento {i}"):
|
| 502 |
documento = gr.File(
|
|
@@ -506,10 +517,8 @@ def create_demo():
|
|
| 506 |
)
|
| 507 |
inputs_list.append(documento)
|
| 508 |
|
| 509 |
-
# Separador
|
| 510 |
gr.Markdown("---")
|
| 511 |
|
| 512 |
-
# Transcripciones
|
| 513 |
with gr.Row():
|
| 514 |
transcripciones_output = gr.Textbox(
|
| 515 |
label="Transcripciones",
|
|
@@ -517,10 +526,8 @@ def create_demo():
|
|
| 517 |
show_copy_button=True
|
| 518 |
)
|
| 519 |
|
| 520 |
-
# Separador
|
| 521 |
gr.Markdown("---")
|
| 522 |
|
| 523 |
-
# Botón y output
|
| 524 |
with gr.Row():
|
| 525 |
generar = gr.Button("Generar borrador")
|
| 526 |
|
|
@@ -531,7 +538,6 @@ def create_demo():
|
|
| 531 |
show_copy_button=True
|
| 532 |
)
|
| 533 |
|
| 534 |
-
# Event handler
|
| 535 |
generar.click(
|
| 536 |
fn=generate_news,
|
| 537 |
inputs=inputs_list,
|
|
@@ -540,7 +546,6 @@ def create_demo():
|
|
| 540 |
|
| 541 |
return demo
|
| 542 |
|
| 543 |
-
# Launch the app
|
| 544 |
if __name__ == "__main__":
|
| 545 |
demo = create_demo()
|
| 546 |
demo.queue()
|
|
|
|
| 6 |
import pandas as pd
|
| 7 |
import requests
|
| 8 |
from bs4 import BeautifulSoup
|
| 9 |
+
from transformers import AutoTokenizer
|
| 10 |
+
from unsloth import FastLanguageModel
|
| 11 |
import torch
|
| 12 |
import whisper
|
| 13 |
from moviepy.editor import VideoFileClip
|
|
|
|
| 16 |
import docx
|
| 17 |
import yt_dlp
|
| 18 |
from functools import lru_cache
|
| 19 |
+
import gc
|
| 20 |
|
| 21 |
# Configure logging
|
| 22 |
logging.basicConfig(
|
|
|
|
| 46 |
def initialize_models(self):
|
| 47 |
"""Initialize models with optimized settings"""
|
| 48 |
try:
|
|
|
|
| 49 |
HUGGINGFACE_TOKEN = os.environ.get('HUGGINGFACE_TOKEN')
|
| 50 |
if not HUGGINGFACE_TOKEN:
|
| 51 |
raise ValueError("HUGGINGFACE_TOKEN environment variable not set")
|
|
|
|
| 61 |
use_fast=True,
|
| 62 |
model_max_length=512
|
| 63 |
)
|
|
|
|
|
|
|
| 64 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 65 |
|
| 66 |
+
# Initialize model with Unsloth optimizations
|
| 67 |
+
logger.info("Loading model with Unsloth optimizations...")
|
| 68 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
| 69 |
+
model_name=model_name,
|
| 70 |
token=HUGGINGFACE_TOKEN,
|
| 71 |
+
max_seq_length=512,
|
| 72 |
+
dtype="float16",
|
| 73 |
+
load_in_4bit=True, # Use 4-bit quantization
|
| 74 |
+
device_map="auto", # Automatically handle device mapping
|
| 75 |
+
kwargs=dict(
|
| 76 |
+
use_gradient_checkpointing=True,
|
| 77 |
+
use_flash_attention_2=True,
|
| 78 |
+
use_merged_kernels=True,
|
| 79 |
+
)
|
| 80 |
)
|
| 81 |
+
|
| 82 |
+
# Apply additional optimizations
|
| 83 |
+
model = FastLanguageModel.get_peft_model(
|
| 84 |
+
model,
|
| 85 |
+
r=16,
|
| 86 |
+
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
|
| 87 |
+
modules_to_save=None,
|
| 88 |
+
lora_alpha=16,
|
| 89 |
+
lora_dropout=0.05,
|
| 90 |
+
bias="none",
|
| 91 |
+
use_gradient_checkpointing=True,
|
| 92 |
+
random_state=42,
|
| 93 |
+
use_rslora=False,
|
| 94 |
+
use_dora=False,
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
self.model = model
|
| 98 |
+
logger.info("Model loaded successfully with Unsloth optimizations")
|
| 99 |
|
| 100 |
+
# Create optimized pipeline
|
| 101 |
logger.info("Creating pipeline...")
|
| 102 |
+
self.news_generator = FastLanguageModel.get_pipeline(
|
|
|
|
| 103 |
model=self.model,
|
| 104 |
tokenizer=self.tokenizer,
|
| 105 |
device_map="auto",
|
|
|
|
| 112 |
num_return_sequences=1,
|
| 113 |
early_stopping=True
|
| 114 |
)
|
|
|
|
|
|
|
| 115 |
|
| 116 |
# Load Whisper model with optimized settings
|
| 117 |
logger.info("Loading Whisper model...")
|
| 118 |
self.whisper_model = whisper.load_model(
|
| 119 |
"tiny",
|
| 120 |
device="cuda",
|
| 121 |
+
download_root="/tmp/whisper",
|
| 122 |
+
in_memory=True
|
| 123 |
)
|
|
|
|
|
|
|
| 124 |
|
| 125 |
logger.info("All models initialized successfully")
|
| 126 |
return True
|
|
|
|
| 133 |
def reset_models(self):
|
| 134 |
"""Reset all models and clear GPU memory"""
|
| 135 |
try:
|
| 136 |
+
if hasattr(self, 'model') and self.model is not None:
|
| 137 |
+
self.model.cpu()
|
| 138 |
+
del self.model
|
| 139 |
+
|
| 140 |
+
if hasattr(self, 'tokenizer') and self.tokenizer is not None:
|
| 141 |
+
del self.tokenizer
|
| 142 |
+
|
| 143 |
+
if hasattr(self, 'news_generator') and self.news_generator is not None:
|
| 144 |
+
del self.news_generator
|
| 145 |
+
|
| 146 |
+
if hasattr(self, 'whisper_model') and self.whisper_model is not None:
|
| 147 |
+
self.whisper_model.cpu()
|
| 148 |
+
del self.whisper_model
|
| 149 |
|
| 150 |
self.tokenizer = None
|
| 151 |
self.model = None
|
| 152 |
self.news_generator = None
|
| 153 |
self.whisper_model = None
|
| 154 |
|
|
|
|
| 155 |
if torch.cuda.is_available():
|
| 156 |
torch.cuda.empty_cache()
|
| 157 |
torch.cuda.synchronize()
|
| 158 |
|
| 159 |
+
gc.collect()
|
| 160 |
+
|
| 161 |
except Exception as e:
|
| 162 |
logger.error(f"Error during model reset: {str(e)}")
|
| 163 |
|
|
|
|
| 175 |
# Create global model manager instance
|
| 176 |
model_manager = ModelManager()
|
| 177 |
|
| 178 |
+
@lru_cache(maxsize=32)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
def download_social_media_video(url):
|
| 180 |
"""Download a video from social media."""
|
| 181 |
ydl_opts = {
|
|
|
|
| 226 |
def transcribe_audio(file):
|
| 227 |
"""Transcribe an audio or video file."""
|
| 228 |
try:
|
|
|
|
| 229 |
_, _, _, whisper_model = model_manager.get_models()
|
| 230 |
|
| 231 |
if isinstance(file, str) and file.startswith('http'):
|
|
|
|
| 251 |
logger.error(f"Error transcribing: {str(e)}")
|
| 252 |
return f"Error processing the file: {str(e)}"
|
| 253 |
|
| 254 |
+
@lru_cache(maxsize=32)
|
| 255 |
def read_document(document_path):
|
| 256 |
"""Read the content of a document."""
|
| 257 |
try:
|
|
|
|
| 271 |
logger.error(f"Error reading document: {str(e)}")
|
| 272 |
return f"Error reading document: {str(e)}"
|
| 273 |
|
| 274 |
+
@lru_cache(maxsize=32)
|
| 275 |
def read_url(url):
|
| 276 |
"""Read the content of a URL."""
|
| 277 |
try:
|
|
|
|
| 304 |
@spaces.GPU(duration=120)
|
| 305 |
def generate_news(instructions, facts, size, tone, *args):
|
| 306 |
try:
|
|
|
|
| 307 |
tokenizer, _, news_generator, _ = model_manager.get_models()
|
| 308 |
|
|
|
|
| 309 |
knowledge_base = {
|
| 310 |
"instructions": instructions,
|
| 311 |
"facts": facts,
|
|
|
|
| 315 |
"social_content": []
|
| 316 |
}
|
| 317 |
|
|
|
|
| 318 |
num_audios = 5 * 3
|
| 319 |
num_social_urls = 3 * 3
|
| 320 |
num_urls = 5
|
|
|
|
| 324 |
urls = args[num_audios+num_social_urls:num_audios+num_social_urls+num_urls]
|
| 325 |
documents = args[num_audios+num_social_urls+num_urls:]
|
| 326 |
|
|
|
|
| 327 |
for url in urls:
|
| 328 |
if url:
|
| 329 |
content = read_url(url)
|
| 330 |
if content and not content.startswith("Error"):
|
| 331 |
knowledge_base["url_content"].append(content)
|
| 332 |
|
|
|
|
| 333 |
for document in documents:
|
| 334 |
if document is not None:
|
| 335 |
content = read_document(document.name)
|
| 336 |
if content and not content.startswith("Error"):
|
| 337 |
knowledge_base["document_content"].append(content)
|
| 338 |
|
|
|
|
| 339 |
for i in range(0, len(audios), 3):
|
| 340 |
audio_file, name, position = audios[i:i+3]
|
| 341 |
if audio_file is not None:
|
|
|
|
| 345 |
"position": position
|
| 346 |
})
|
| 347 |
|
|
|
|
| 348 |
for i in range(0, len(social_urls), 3):
|
| 349 |
social_url, social_name, social_context = social_urls[i:i+3]
|
| 350 |
if social_url:
|
|
|
|
| 358 |
"video": social_content["video"]
|
| 359 |
})
|
| 360 |
|
|
|
|
| 361 |
transcriptions_text = ""
|
| 362 |
raw_transcriptions = ""
|
| 363 |
|
|
|
|
| 380 |
document_content = "\n\n".join(knowledge_base["document_content"])
|
| 381 |
url_content = "\n\n".join(knowledge_base["url_content"])
|
| 382 |
|
| 383 |
+
|
| 384 |
prompt = f"""[INST] You are a professional news writer. Write a news article based on the following information:
|
| 385 |
|
| 386 |
Instructions: {knowledge_base["instructions"]}
|
|
|
|
| 407 |
|
| 408 |
# Generate article with optimized settings
|
| 409 |
with torch.inference_mode():
|
| 410 |
+
try:
|
| 411 |
+
news_article = news_generator(
|
| 412 |
+
prompt,
|
| 413 |
+
max_new_tokens=max_tokens,
|
| 414 |
+
num_return_sequences=1,
|
| 415 |
+
do_sample=True,
|
| 416 |
+
temperature=0.7,
|
| 417 |
+
top_p=0.95,
|
| 418 |
+
repetition_penalty=1.2,
|
| 419 |
+
early_stopping=True
|
| 420 |
+
)
|
| 421 |
+
|
| 422 |
+
# Process the generated text
|
| 423 |
+
if isinstance(news_article, list):
|
| 424 |
+
news_article = news_article[0]['generated_text']
|
| 425 |
+
news_article = news_article.replace('[INST]', '').replace('[/INST]', '').strip()
|
| 426 |
+
|
| 427 |
+
except Exception as gen_error:
|
| 428 |
+
logger.error(f"Error in text generation: {str(gen_error)}")
|
| 429 |
+
raise
|
| 430 |
|
| 431 |
return news_article, raw_transcriptions
|
| 432 |
|
| 433 |
except Exception as e:
|
| 434 |
logger.error(f"Error generating news: {str(e)}")
|
| 435 |
try:
|
| 436 |
+
# Attempt to recover by resetting and reinitializing models
|
| 437 |
model_manager.reset_models()
|
| 438 |
model_manager.initialize_models()
|
| 439 |
+
logger.info("Models reinitialized successfully after error")
|
| 440 |
except Exception as reinit_error:
|
| 441 |
logger.error(f"Failed to reinitialize models: {str(reinit_error)}")
|
| 442 |
return f"Error generating the news article: {str(e)}", ""
|
| 443 |
+
|
| 444 |
def create_demo():
|
| 445 |
with gr.Blocks() as demo:
|
| 446 |
gr.Markdown("## Generador de noticias todo en uno")
|
| 447 |
|
|
|
|
| 448 |
with gr.Row():
|
|
|
|
| 449 |
with gr.Column(scale=2):
|
| 450 |
instrucciones = gr.Textbox(
|
| 451 |
label="Instrucciones para la noticia",
|
|
|
|
| 465 |
value="neutral"
|
| 466 |
)
|
| 467 |
|
|
|
|
| 468 |
with gr.Column(scale=3):
|
|
|
|
| 469 |
inputs_list = [instrucciones, hechos, tamaño, tono]
|
| 470 |
|
|
|
|
| 471 |
with gr.Tabs():
|
|
|
|
| 472 |
for i in range(1, 6):
|
| 473 |
with gr.TabItem(f"Audio/Video {i}"):
|
| 474 |
file = gr.File(
|
|
|
|
| 485 |
)
|
| 486 |
inputs_list.extend([file, nombre, cargo])
|
| 487 |
|
|
|
|
| 488 |
for i in range(1, 4):
|
| 489 |
with gr.TabItem(f"Red Social {i}"):
|
| 490 |
social_url = gr.Textbox(
|
|
|
|
| 500 |
)
|
| 501 |
inputs_list.extend([social_url, social_nombre, social_contexto])
|
| 502 |
|
|
|
|
| 503 |
for i in range(1, 6):
|
| 504 |
with gr.TabItem(f"URL {i}"):
|
| 505 |
url = gr.Textbox(
|
|
|
|
| 508 |
)
|
| 509 |
inputs_list.append(url)
|
| 510 |
|
|
|
|
| 511 |
for i in range(1, 6):
|
| 512 |
with gr.TabItem(f"Documento {i}"):
|
| 513 |
documento = gr.File(
|
|
|
|
| 517 |
)
|
| 518 |
inputs_list.append(documento)
|
| 519 |
|
|
|
|
| 520 |
gr.Markdown("---")
|
| 521 |
|
|
|
|
| 522 |
with gr.Row():
|
| 523 |
transcripciones_output = gr.Textbox(
|
| 524 |
label="Transcripciones",
|
|
|
|
| 526 |
show_copy_button=True
|
| 527 |
)
|
| 528 |
|
|
|
|
| 529 |
gr.Markdown("---")
|
| 530 |
|
|
|
|
| 531 |
with gr.Row():
|
| 532 |
generar = gr.Button("Generar borrador")
|
| 533 |
|
|
|
|
| 538 |
show_copy_button=True
|
| 539 |
)
|
| 540 |
|
|
|
|
| 541 |
generar.click(
|
| 542 |
fn=generate_news,
|
| 543 |
inputs=inputs_list,
|
|
|
|
| 546 |
|
| 547 |
return demo
|
| 548 |
|
|
|
|
| 549 |
if __name__ == "__main__":
|
| 550 |
demo = create_demo()
|
| 551 |
demo.queue()
|