Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -22,12 +22,12 @@ import traceback # For detailed error logging
|
|
| 22 |
|
| 23 |
# Configure logging
|
| 24 |
logging.basicConfig(
|
| 25 |
-
level=logging.INFO,
|
| 26 |
-
format='%(asctime)s - %(levelname)s - %(filename)s:%(lineno)d - %(message)s'
|
| 27 |
)
|
| 28 |
logger = logging.getLogger(__name__)
|
| 29 |
|
| 30 |
-
logger.info("--- Starting App ---")
|
| 31 |
|
| 32 |
# Login to Hugging Face Hub if token is available
|
| 33 |
HUGGINGFACE_TOKEN = os.environ.get('HUGGINGFACE_TOKEN')
|
|
@@ -40,7 +40,7 @@ if HUGGINGFACE_TOKEN:
|
|
| 40 |
logger.error(f"Failed to login to Hugging Face Hub: {e}")
|
| 41 |
logger.error(traceback.format_exc())
|
| 42 |
else:
|
| 43 |
-
logger.warning("HUGGINGFACE_TOKEN environment variable not set.
|
| 44 |
|
| 45 |
|
| 46 |
class ModelManager:
|
|
@@ -54,7 +54,7 @@ class ModelManager:
|
|
| 54 |
return cls._instance
|
| 55 |
|
| 56 |
def __init__(self):
|
| 57 |
-
if not hasattr(self, '_initialized') or not self._initialized:
|
| 58 |
logger.info("Initializing ModelManager attributes.")
|
| 59 |
self.tokenizer = None
|
| 60 |
self.model = None
|
|
@@ -65,10 +65,9 @@ class ModelManager:
|
|
| 65 |
self.last_used = time.time()
|
| 66 |
self.llm_loading = False
|
| 67 |
self.whisper_loading = False
|
| 68 |
-
self._initialized = True
|
| 69 |
|
| 70 |
def _cleanup_memory(self):
|
| 71 |
-
"""Utility function to force memory cleanup"""
|
| 72 |
logger.info("Running garbage collection...")
|
| 73 |
collected_count = gc.collect()
|
| 74 |
logger.info(f"Garbage collected ({collected_count} objects).")
|
|
@@ -78,500 +77,262 @@ class ModelManager:
|
|
| 78 |
logger.info("CUDA cache cleared.")
|
| 79 |
|
| 80 |
def reset_llm(self):
|
| 81 |
-
"""Explicitly resets the LLM components."""
|
| 82 |
logger.info("--- Attempting to reset LLM ---")
|
| 83 |
try:
|
| 84 |
-
|
| 85 |
-
if hasattr(self, '
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
del self.tokenizer
|
| 90 |
-
logger.info("LLM tokenizer deleted.")
|
| 91 |
-
if hasattr(self, 'text_pipeline') and self.text_pipeline is not None:
|
| 92 |
-
del self.text_pipeline
|
| 93 |
-
logger.info("LLM pipeline deleted.")
|
| 94 |
-
|
| 95 |
-
# Reset attributes
|
| 96 |
-
self.model = None
|
| 97 |
-
self.tokenizer = None
|
| 98 |
-
self.text_pipeline = None
|
| 99 |
-
self.llm_loaded = False # Mark as not loaded
|
| 100 |
self._cleanup_memory()
|
| 101 |
logger.info("LLM components reset successfully.")
|
| 102 |
-
except Exception as e:
|
| 103 |
-
logger.error(f"!!! ERROR during LLM reset: {e}")
|
| 104 |
-
logger.error(traceback.format_exc())
|
| 105 |
|
| 106 |
def reset_whisper(self):
|
| 107 |
-
"""Explicitly resets the Whisper model."""
|
| 108 |
logger.info("--- Attempting to reset Whisper ---")
|
| 109 |
try:
|
| 110 |
-
if hasattr(self, 'whisper_model') and self.whisper_model is not None:
|
| 111 |
-
del self.whisper_model
|
| 112 |
-
logger.info("Whisper model deleted.")
|
| 113 |
-
|
| 114 |
self.whisper_model = None
|
| 115 |
-
self.whisper_loaded = False
|
| 116 |
self._cleanup_memory()
|
| 117 |
logger.info("Whisper component reset successfully.")
|
| 118 |
-
except Exception as e:
|
| 119 |
-
logger.error(f"!!! ERROR during Whisper reset: {e}")
|
| 120 |
-
logger.error(traceback.format_exc())
|
| 121 |
|
| 122 |
@spaces.GPU(duration=120)
|
| 123 |
def initialize_llm(self):
|
| 124 |
-
"""Initialize LLM model with standard transformers"""
|
| 125 |
logger.info("Attempting to initialize LLM.")
|
| 126 |
-
if self.llm_loading:
|
| 127 |
-
|
| 128 |
-
return True
|
| 129 |
-
if self.llm_loaded:
|
| 130 |
-
logger.info("LLM already initialized.")
|
| 131 |
-
self.last_used = time.time()
|
| 132 |
-
return True
|
| 133 |
-
|
| 134 |
-
# Explicitly try to free Whisper memory before loading LLM
|
| 135 |
-
# self.reset_whisper() # Optional: Uncomment if severe memory pressure
|
| 136 |
-
|
| 137 |
self.llm_loading = True
|
| 138 |
logger.info("Starting LLM initialization...")
|
| 139 |
try:
|
| 140 |
MODEL_NAME = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
| 141 |
logger.info(f"Using LLM model: {MODEL_NAME}")
|
| 142 |
-
|
| 143 |
-
logger.info("Loading LLM tokenizer...")
|
| 144 |
self.tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=HUGGINGFACE_TOKEN, use_fast=True)
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
logger.info("Loading LLM model...")
|
| 150 |
-
self.model = AutoModelForCausalLM.from_pretrained(
|
| 151 |
-
MODEL_NAME, token=HUGGINGFACE_TOKEN, device_map="auto",
|
| 152 |
-
torch_dtype=torch.float16, low_cpu_mem_usage=True,
|
| 153 |
-
offload_folder="offload", offload_state_dict=True
|
| 154 |
-
)
|
| 155 |
-
logger.info("LLM model loaded.")
|
| 156 |
-
|
| 157 |
-
logger.info("Creating LLM text generation pipeline...")
|
| 158 |
-
self.text_pipeline = pipeline(
|
| 159 |
-
"text-generation", model=self.model, tokenizer=self.tokenizer,
|
| 160 |
-
torch_dtype=torch.float16, device_map="auto", max_length=1024
|
| 161 |
-
)
|
| 162 |
-
logger.info("LLM text generation pipeline created.")
|
| 163 |
-
|
| 164 |
logger.info("LLM initialized successfully.")
|
| 165 |
-
self.last_used = time.time()
|
| 166 |
-
|
| 167 |
-
self.llm_loading = False
|
| 168 |
-
return True
|
| 169 |
-
|
| 170 |
-
except Exception as e:
|
| 171 |
-
logger.error(f"!!! ERROR during LLM initialization: {str(e)}")
|
| 172 |
-
logger.error(traceback.format_exc())
|
| 173 |
-
logger.error("Resetting potentially partially loaded LLM components due to error.")
|
| 174 |
-
self.reset_llm() # Use the specific reset function
|
| 175 |
-
self.llm_loading = False
|
| 176 |
-
raise
|
| 177 |
|
| 178 |
@spaces.GPU(duration=120)
|
| 179 |
def initialize_whisper(self):
|
| 180 |
-
"""Initialize Whisper model for audio transcription"""
|
| 181 |
logger.info("Attempting to initialize Whisper.")
|
| 182 |
-
if self.whisper_loading:
|
| 183 |
-
|
| 184 |
-
return True
|
| 185 |
-
if self.whisper_loaded:
|
| 186 |
-
logger.info("Whisper already initialized.")
|
| 187 |
-
self.last_used = time.time()
|
| 188 |
-
return True
|
| 189 |
-
|
| 190 |
-
# Explicitly try to free LLM memory before loading Whisper
|
| 191 |
-
# self.reset_llm() # Optional: Uncomment if severe memory pressure
|
| 192 |
-
|
| 193 |
self.whisper_loading = True
|
| 194 |
logger.info("Starting Whisper initialization...")
|
| 195 |
try:
|
| 196 |
WHISPER_MODEL_NAME = "tiny"
|
| 197 |
-
|
| 198 |
-
self.whisper_model = whisper.load_model(
|
| 199 |
-
WHISPER_MODEL_NAME, device="cuda" if torch.cuda.is_available() else "cpu",
|
| 200 |
-
download_root="/tmp/whisper"
|
| 201 |
-
)
|
| 202 |
logger.info(f"Whisper model '{WHISPER_MODEL_NAME}' loaded successfully.")
|
| 203 |
-
self.last_used = time.time()
|
| 204 |
-
|
| 205 |
-
self.whisper_loading = False
|
| 206 |
-
return True
|
| 207 |
-
except Exception as e:
|
| 208 |
-
logger.error(f"!!! ERROR during Whisper initialization: {str(e)}")
|
| 209 |
-
logger.error(traceback.format_exc())
|
| 210 |
-
logger.error("Resetting potentially partially loaded Whisper components due to error.")
|
| 211 |
-
self.reset_whisper() # Use the specific reset function
|
| 212 |
-
self.whisper_loading = False
|
| 213 |
-
raise
|
| 214 |
|
| 215 |
def check_llm_initialized(self):
|
| 216 |
-
"""Check if LLM is initialized and initialize if needed"""
|
| 217 |
logger.info("Checking if LLM is initialized.")
|
| 218 |
if not self.llm_loaded:
|
| 219 |
logger.info("LLM not initialized, attempting initialization...")
|
| 220 |
-
if not self.llm_loading:
|
| 221 |
-
self.initialize_llm() # This will raise error if it fails
|
| 222 |
-
logger.info("LLM initialization completed by check_llm_initialized.")
|
| 223 |
else:
|
| 224 |
-
logger.info("LLM initialization
|
| 225 |
time.sleep(10)
|
| 226 |
-
if not self.llm_loaded:
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
else:
|
| 230 |
-
logger.info("LLM seems initialized now after waiting.")
|
| 231 |
-
else:
|
| 232 |
-
logger.info("LLM was already initialized.")
|
| 233 |
self.last_used = time.time()
|
| 234 |
|
| 235 |
-
|
| 236 |
def check_whisper_initialized(self):
|
| 237 |
-
"""Check if Whisper model is initialized and initialize if needed"""
|
| 238 |
logger.info("Checking if Whisper is initialized.")
|
| 239 |
if not self.whisper_loaded:
|
| 240 |
logger.info("Whisper model not initialized, attempting initialization...")
|
| 241 |
-
if not self.whisper_loading:
|
| 242 |
-
self.initialize_whisper() # This will raise error if it fails
|
| 243 |
-
logger.info("Whisper initialization completed by check_whisper_initialized.")
|
| 244 |
else:
|
| 245 |
-
logger.info("Whisper initialization
|
| 246 |
time.sleep(10)
|
| 247 |
-
if not self.whisper_loaded:
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
else:
|
| 251 |
-
logger.info("Whisper seems initialized now after waiting.")
|
| 252 |
-
else:
|
| 253 |
-
logger.info("Whisper was already initialized.")
|
| 254 |
self.last_used = time.time()
|
| 255 |
|
| 256 |
def reset_models(self, force=False):
|
| 257 |
-
"
|
| 258 |
-
if force:
|
| 259 |
-
logger.info("Forcing reset of all models.")
|
| 260 |
-
self.reset_llm()
|
| 261 |
-
self.reset_whisper()
|
| 262 |
-
|
| 263 |
|
| 264 |
# Create global model manager instance
|
| 265 |
logger.info("Creating global ModelManager instance.")
|
| 266 |
model_manager = ModelManager()
|
| 267 |
|
| 268 |
-
|
| 269 |
# --- Functions: download_social_media_video, convert_video_to_audio, etc. ---
|
| 270 |
-
# ---
|
| 271 |
-
# --- with detailed logging. Paste them here. ---
|
| 272 |
-
|
| 273 |
@lru_cache(maxsize=16)
|
| 274 |
def download_social_media_video(url):
|
| 275 |
-
"
|
| 276 |
-
logger.info(f"Attempting to download audio from social media URL: {url}")
|
| 277 |
temp_dir = tempfile.mkdtemp()
|
| 278 |
output_template = os.path.join(temp_dir, '%(id)s.%(ext)s')
|
| 279 |
final_audio_file_path = None
|
| 280 |
-
ydl_opts = {
|
| 281 |
-
'format': 'bestaudio/best', 'postprocessors': [{'key': 'FFmpegExtractAudio', 'preferredcodec': 'mp3', 'preferredquality': '192'}],
|
| 282 |
-
'outtmpl': output_template, 'quiet': True, 'no_warnings': True, 'nocheckcertificate': True, 'retries': 3, 'socket_timeout': 15, 'cachedir': False
|
| 283 |
-
}
|
| 284 |
try:
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
logger.debug(f"yt-dlp extraction complete for {url}. ID: {info_dict.get('id')}")
|
| 290 |
-
found_files = [f for f in os.listdir(temp_dir) if f.endswith('.mp3')]
|
| 291 |
-
if found_files:
|
| 292 |
-
final_audio_file_path = os.path.join(temp_dir, found_files[0])
|
| 293 |
-
logger.debug(f"Found downloaded MP3: {final_audio_file_path}")
|
| 294 |
-
else:
|
| 295 |
-
logger.error(f"Could not find downloaded MP3 file in {temp_dir} for URL {url}")
|
| 296 |
-
raise FileNotFoundError(f"Downloaded MP3 not found in {temp_dir}")
|
| 297 |
-
logger.debug(f"Reading content of {final_audio_file_path}")
|
| 298 |
with open(final_audio_file_path, 'rb') as f: audio_content = f.read()
|
| 299 |
-
logger.debug("Saving audio content to a new temporary file...")
|
| 300 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_output_file:
|
| 301 |
-
temp_output_file.write(audio_content)
|
| 302 |
-
|
| 303 |
-
logger.info(f"Audio content saved to temporary file for processing: {final_path_for_gradio}")
|
| 304 |
return final_path_for_gradio
|
| 305 |
-
except yt_dlp.utils.DownloadError as e:
|
| 306 |
-
|
| 307 |
-
return None
|
| 308 |
-
except Exception as e:
|
| 309 |
-
logger.error(f"!!! Unexpected error downloading video from {url}: {str(e)}")
|
| 310 |
-
logger.error(traceback.format_exc())
|
| 311 |
-
return None
|
| 312 |
finally:
|
| 313 |
if os.path.exists(temp_dir):
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
import shutil
|
| 317 |
-
shutil.rmtree(temp_dir)
|
| 318 |
-
except Exception as cleanup_e: logger.warning(f"Could not clean up {temp_dir}: {cleanup_e}")
|
| 319 |
|
| 320 |
def convert_video_to_audio(video_file_path):
|
| 321 |
-
"
|
| 322 |
-
logger.info(f"Attempting to convert video to audio: {video_file_path}")
|
| 323 |
output_file_path = None
|
| 324 |
try:
|
| 325 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_file: output_file_path = temp_file.name
|
| 326 |
-
logger.debug(f"Output audio path will be: {output_file_path}")
|
| 327 |
command = ["ffmpeg", "-i", video_file_path, "-vn", "-acodec", "libmp3lame", "-ab", "192k", "-ar", "44100", "-ac", "2", output_file_path, "-y", "-loglevel", "error"]
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
logger.
|
| 331 |
-
if not os.path.exists(output_file_path) or os.path.getsize(output_file_path) == 0:
|
| 332 |
-
logger.error(f"ffmpeg conversion failed: Output file '{output_file_path}' not created or is empty.")
|
| 333 |
-
raise RuntimeError(f"ffmpeg conversion failed: Output file '{output_file_path}' not created or is empty.")
|
| 334 |
-
logger.info(f"Video successfully converted to audio: {output_file_path}")
|
| 335 |
return output_file_path
|
| 336 |
-
except subprocess.CalledProcessError as e:
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
except: pass
|
| 342 |
-
raise RuntimeError(f"ffmpeg conversion failed: {e.stderr}") from e
|
| 343 |
-
except subprocess.TimeoutExpired as e:
|
| 344 |
-
logger.error(f"!!! ffmpeg command timed out after {e.timeout} seconds for video: {video_file_path}")
|
| 345 |
-
if output_file_path and os.path.exists(output_file_path):
|
| 346 |
-
try: os.remove(output_file_path)
|
| 347 |
-
except: pass
|
| 348 |
-
raise RuntimeError(f"ffmpeg conversion timed out after {e.timeout} seconds.") from e
|
| 349 |
-
except Exception as e:
|
| 350 |
-
logger.error(f"!!! Error converting video '{video_file_path}': {str(e)}")
|
| 351 |
-
logger.error(traceback.format_exc())
|
| 352 |
-
if output_file_path and os.path.exists(output_file_path):
|
| 353 |
try: os.remove(output_file_path)
|
| 354 |
except: pass
|
| 355 |
-
raise
|
| 356 |
|
| 357 |
def preprocess_audio(input_audio_path):
|
| 358 |
-
"
|
| 359 |
-
logger.info(f"Attempting to preprocess audio file: {input_audio_path}")
|
| 360 |
output_path = None
|
| 361 |
try:
|
| 362 |
-
if not os.path.exists(input_audio_path):
|
| 363 |
-
logger.error(f"Input audio file for preprocessing not found: {input_audio_path}")
|
| 364 |
-
raise FileNotFoundError(f"Input audio file not found: {input_audio_path}")
|
| 365 |
-
logger.debug("Loading audio with pydub...")
|
| 366 |
audio = AudioSegment.from_file(input_audio_path)
|
| 367 |
-
logger.debug("Audio loaded.")
|
| 368 |
-
# Optional normalization can be added here
|
| 369 |
-
logger.debug("Exporting preprocessed audio...")
|
| 370 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_file:
|
| 371 |
-
output_path = temp_file.name
|
| 372 |
-
|
| 373 |
-
logger.info(f"Audio preprocessed and saved to: {output_path}")
|
| 374 |
return output_path
|
| 375 |
-
except FileNotFoundError as e:
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
if output_path and os.path.exists(output_path):
|
| 382 |
-
try: os.remove(output_path)
|
| 383 |
-
except: pass
|
| 384 |
-
raise
|
| 385 |
|
| 386 |
@spaces.GPU(duration=300)
|
| 387 |
def transcribe_audio_or_video(file_input):
|
| 388 |
-
"
|
| 389 |
-
|
| 390 |
-
audio_file_to_transcribe = None; original_input_path = None
|
| 391 |
-
temp_files_to_clean = []; processing_step = "Initialization"; transcription = ""
|
| 392 |
try:
|
| 393 |
-
|
| 394 |
-
logger.info("Checking/Initializing Whisper model for transcription...")
|
| 395 |
-
model_manager.check_whisper_initialized()
|
| 396 |
-
logger.info("Whisper model is ready for transcription.")
|
| 397 |
if file_input is None: return ""
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
input_path = original_input_path
|
| 403 |
-
elif hasattr(file_input, 'name') and file_input.name:
|
| 404 |
-
original_input_path = file_input.name
|
| 405 |
-
if not os.path.exists(original_input_path): raise FileNotFoundError(f"Gradio temporary file not found: {original_input_path}")
|
| 406 |
-
input_path = original_input_path
|
| 407 |
-
else: raise TypeError("Invalid input type for transcription.")
|
| 408 |
-
logger.debug(f"Input path identified: {input_path}")
|
| 409 |
file_extension = os.path.splitext(input_path)[1].lower()
|
| 410 |
-
logger.debug(f"File extension: {file_extension}")
|
| 411 |
-
processing_step = "Video Conversion Check"
|
| 412 |
if file_extension in ['.mp4', '.avi', '.mov', '.mkv', '.webm']:
|
| 413 |
-
logger.info(f"Detected video file ({file_extension}), converting...")
|
| 414 |
converted_audio_path = convert_video_to_audio(input_path)
|
| 415 |
temp_files_to_clean.append(converted_audio_path); audio_file_to_process = converted_audio_path
|
| 416 |
-
elif file_extension in ['.mp3', '.wav', '.ogg', '.flac', '.m4a', '.aac']:
|
| 417 |
-
|
| 418 |
-
audio_file_to_process = input_path
|
| 419 |
-
else: raise ValueError(f"Unsupported file type: {file_extension}")
|
| 420 |
-
processing_step = "Audio Preprocessing"
|
| 421 |
try:
|
| 422 |
-
logger.debug(f"Attempting to preprocess audio file: {audio_file_to_process}")
|
| 423 |
preprocessed_audio_path = preprocess_audio(audio_file_to_process)
|
| 424 |
if preprocessed_audio_path != audio_file_to_process: temp_files_to_clean.append(preprocessed_audio_path)
|
| 425 |
audio_file_to_transcribe = preprocessed_audio_path
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
audio_file_to_transcribe = audio_file_to_process
|
| 430 |
-
processing_step = "Transcription Execution"
|
| 431 |
-
logger.info(f"Starting transcription execution for: {audio_file_to_transcribe}")
|
| 432 |
-
if not os.path.exists(audio_file_to_transcribe): raise FileNotFoundError(f"Audio file to transcribe not found: {audio_file_to_transcribe}")
|
| 433 |
-
logger.debug("Calling Whisper model transcribe method...")
|
| 434 |
with torch.inference_mode():
|
| 435 |
-
use_fp16 = torch.cuda.is_available()
|
| 436 |
result = model_manager.whisper_model.transcribe(audio_file_to_transcribe, fp16=use_fp16)
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
processing_step = "Success"
|
| 442 |
-
except FileNotFoundError as e:
|
| 443 |
-
logger.error(f"!!! File not found error (Step: {processing_step}): {e}"); transcription = f"Error: Input file not found ({e})"
|
| 444 |
-
except ValueError as e:
|
| 445 |
-
logger.error(f"!!! Value error (Step: {processing_step}): {e}"); transcription = f"Error: Unsupported file type ({e})"
|
| 446 |
-
except TypeError as e:
|
| 447 |
-
logger.error(f"!!! Type error (Step: {processing_step}): {e}"); transcription = f"Error: Invalid input provided ({e})"
|
| 448 |
-
except RuntimeError as e:
|
| 449 |
-
logger.error(f"!!! Runtime error (Step: {processing_step}): {e}"); logger.error(traceback.format_exc()); transcription = f"Error during processing: {e}"
|
| 450 |
-
except Exception as e:
|
| 451 |
-
logger.error(f"!!! Unexpected error (Step: {processing_step}): {str(e)}"); logger.error(traceback.format_exc()); transcription = f"Error processing the file: An unexpected error occurred."
|
| 452 |
finally:
|
| 453 |
-
logger.debug(f"--- Cleaning
|
| 454 |
for temp_file in temp_files_to_clean:
|
| 455 |
try:
|
| 456 |
-
if os.path.exists(temp_file): os.remove(temp_file)
|
| 457 |
-
except Exception as e: logger.warning(f"
|
| 458 |
-
logger.debug("--- Finished transcription cleanup ---")
|
| 459 |
return transcription
|
| 460 |
|
| 461 |
@lru_cache(maxsize=16)
|
| 462 |
def read_document(document_path):
|
| 463 |
-
"
|
| 464 |
-
logger.info(f"Attempting to read document: {document_path}")
|
| 465 |
try:
|
| 466 |
-
if not os.path.exists(document_path): raise FileNotFoundError(f"
|
| 467 |
-
|
| 468 |
content = ""
|
| 469 |
-
if
|
| 470 |
-
logger.debug("Reading PDF using PyMuPDF...")
|
| 471 |
doc = fitz.open(document_path)
|
| 472 |
-
if doc.is_encrypted:
|
| 473 |
-
logger.warning(f"PDF {document_path} encrypted. Trying empty password.")
|
| 474 |
-
if not doc.authenticate(""): raise ValueError("Encrypted PDF cannot be read.")
|
| 475 |
content = "\n".join([page.get_text() for page in doc]); doc.close()
|
| 476 |
-
elif
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
for sheet_name in xls.sheet_names:
|
| 483 |
-
logger.debug(f"Reading sheet: {sheet_name}")
|
| 484 |
-
df = pd.read_excel(xls, sheet_name=sheet_name); text_parts.append(f"--- Sheet: {sheet_name} ---\n{df.to_string()}")
|
| 485 |
-
content = "\n\n".join(text_parts).strip()
|
| 486 |
-
elif file_extension == ".csv":
|
| 487 |
-
logger.debug("Reading CSV using pandas...")
|
| 488 |
try:
|
| 489 |
-
with open(document_path, 'rb') as f: import chardet;
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
except Exception as e2:
|
| 496 |
-
logger.error(f"Also failed with semicolon ({e2}). Trying latin1.")
|
| 497 |
-
try: df = pd.read_csv(document_path, encoding='latin1')
|
| 498 |
-
except Exception as e3: raise ValueError(f"Failed to parse CSV: {e1}, {e2}, {e3}")
|
| 499 |
content = df.to_string()
|
| 500 |
-
else: return "Unsupported file type.
|
| 501 |
-
logger.info(f"
|
| 502 |
return content
|
| 503 |
-
except
|
| 504 |
-
except ValueError as e: logger.error(f"!!! Value error reading doc: {e}"); return f"Error reading document: {e}"
|
| 505 |
-
except Exception as e: logger.error(f"!!! Error reading doc: {str(e)}"); logger.error(traceback.format_exc()); return f"Error reading document: {str(e)}"
|
| 506 |
|
| 507 |
@lru_cache(maxsize=16)
|
| 508 |
def read_url(url):
|
| 509 |
-
"
|
| 510 |
-
logger.info(f"Attempting to read URL: {url}")
|
| 511 |
if not url or not url.strip().startswith('http'): return ""
|
| 512 |
try:
|
| 513 |
-
headers = {'User-Agent': 'Mozilla/5.0 ...
|
| 514 |
-
logger.debug(f"Sending GET to {url}")
|
| 515 |
response = requests.get(url, headers=headers, timeout=20, allow_redirects=True)
|
| 516 |
-
logger.debug(f"Response from {url}: {response.status_code}, CT: {response.headers.get('content-type')}")
|
| 517 |
response.raise_for_status()
|
| 518 |
-
|
| 519 |
-
if not ('html' in
|
| 520 |
-
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
|
| 528 |
-
|
| 529 |
-
|
| 530 |
-
|
| 531 |
-
|
| 532 |
-
body = soup.find("body")
|
| 533 |
-
if body: text = body.get_text(separator='\n', strip=True)
|
| 534 |
-
else: text = soup.get_text(separator='\n', strip=True)
|
| 535 |
-
lines = [line.strip() for line in text.split('\n') if line.strip()]; cleaned_text = "\n".join(lines)
|
| 536 |
-
if not cleaned_text: return "Error: Could not extract text content from URL."
|
| 537 |
-
max_chars = 15000
|
| 538 |
-
final_text = (cleaned_text[:max_chars] + "... [content truncated]") if len(cleaned_text) > max_chars else cleaned_text
|
| 539 |
-
logger.info(f"Successfully read URL {url}. Final length: {len(final_text)}")
|
| 540 |
-
return final_text
|
| 541 |
-
except requests.exceptions.RequestException as e: logger.error(f"!!! Error fetching URL {url}: {e}"); return f"Error reading URL: Could not fetch content ({e})"
|
| 542 |
-
except Exception as e: logger.error(f"!!! Error parsing URL {url}: {e}"); logger.error(traceback.format_exc()); return f"Error reading URL: Could not parse content ({e})"
|
| 543 |
|
| 544 |
def process_social_media_url(url):
|
| 545 |
-
"
|
| 546 |
-
logger.info(f"--- Starting processing for social media URL: {url} ---")
|
| 547 |
if not url or not url.strip().startswith('http'): return None
|
| 548 |
-
|
| 549 |
-
try:
|
| 550 |
-
|
| 551 |
-
text_content_result = read_url(url)
|
| 552 |
-
if text_content_result and not text_content_result.startswith("Error:"): text_content = text_content_result; logger.debug("Text read success.")
|
| 553 |
-
elif text_content_result: logger.warning(f"read_url error for {url}: {text_content_result}")
|
| 554 |
-
else: logger.debug("No text via read_url.")
|
| 555 |
-
except Exception as e: logger.error(f"!!! Exception text reading social URL {url}: {e}"); logger.error(traceback.format_exc())
|
| 556 |
try:
|
| 557 |
-
|
| 558 |
-
|
| 559 |
-
|
| 560 |
-
logger.info(f"Audio downloaded from {url} to {temp_audio_file}. Transcribing...")
|
| 561 |
-
transcription_result = transcribe_audio_or_video(temp_audio_file)
|
| 562 |
-
if transcription_result and not transcription_result.startswith("Error"): video_transcription = transcription_result; logger.info("Transcription success.")
|
| 563 |
-
elif transcription_result: logger.warning(f"Transcription error for {url}: {transcription_result}")
|
| 564 |
-
else: logger.warning(f"Empty transcription for {url}.")
|
| 565 |
-
else: logger.debug("No downloadable audio found.")
|
| 566 |
-
except Exception as e: logger.error(f"!!! Exception audio processing social URL {url}: {e}"); logger.error(traceback.format_exc())
|
| 567 |
finally:
|
| 568 |
-
if
|
| 569 |
-
|
| 570 |
-
|
| 571 |
-
|
| 572 |
-
|
| 573 |
-
|
| 574 |
-
else: logger.info(f"No usable content retrieved for social URL: {url}"); return None
|
| 575 |
|
| 576 |
# ==============================================================
|
| 577 |
# ========= SIMPLIFIED generate_news FOR DEBUGGING =============
|
|
@@ -613,7 +374,8 @@ def generate_news(instructions, facts, size, tone, *args):
|
|
| 613 |
# ==============================================================
|
| 614 |
|
| 615 |
|
| 616 |
-
# --- create_demo function
|
|
|
|
| 617 |
def create_demo():
|
| 618 |
"""Creates the Gradio interface"""
|
| 619 |
logger.info("--- Creating Gradio interface ---")
|
|
@@ -623,55 +385,46 @@ def create_demo():
|
|
| 623 |
all_inputs = []
|
| 624 |
with gr.Row():
|
| 625 |
with gr.Column(scale=2):
|
| 626 |
-
logger.info("Creating instruction input.")
|
| 627 |
instructions = gr.Textbox(label="Instructions for the News Article", placeholder="Enter specific instructions...", lines=2)
|
| 628 |
all_inputs.append(instructions)
|
| 629 |
-
logger.info("Creating facts input.")
|
| 630 |
facts = gr.Textbox(label="Main Facts", placeholder="Describe the most important facts...", lines=4)
|
| 631 |
all_inputs.append(facts)
|
| 632 |
with gr.Row():
|
| 633 |
-
logger.info("Creating size slider.")
|
| 634 |
size_slider = gr.Slider(label="Approximate Length (words)", minimum=100, maximum=700, value=250, step=50)
|
| 635 |
all_inputs.append(size_slider)
|
| 636 |
-
logger.info("Creating tone dropdown.")
|
| 637 |
tone_dropdown = gr.Dropdown(label="Tone of the News Article", choices=["neutral", "serious", "formal", "urgent", "investigative", "human-interest", "lighthearted"], value="neutral")
|
| 638 |
all_inputs.append(tone_dropdown)
|
| 639 |
with gr.Column(scale=3):
|
| 640 |
with gr.Tabs():
|
| 641 |
with gr.TabItem("π Documents"):
|
| 642 |
-
logger.info("Creating document input tabs.")
|
| 643 |
gr.Markdown("Upload relevant documents (PDF, DOCX, XLSX, CSV). Max 5.")
|
| 644 |
doc_inputs = []
|
| 645 |
for i in range(1, 6):
|
| 646 |
-
|
|
|
|
| 647 |
doc_inputs.append(doc_file)
|
| 648 |
all_inputs.extend(doc_inputs)
|
| 649 |
-
logger.info(f"{len(doc_inputs)} document inputs created.")
|
| 650 |
with gr.TabItem("π Audio/Video"):
|
| 651 |
-
logger.info("Creating audio/video input tabs.")
|
| 652 |
gr.Markdown("Upload audio or video files... Max 5 sources.")
|
| 653 |
audio_video_inputs = []
|
| 654 |
for i in range(1, 6):
|
| 655 |
with gr.Group():
|
| 656 |
gr.Markdown(f"**Source {i}**")
|
| 657 |
-
|
|
|
|
| 658 |
with gr.Row():
|
| 659 |
speaker_name = gr.Textbox(label="Speaker Name", placeholder="Name...")
|
| 660 |
speaker_role = gr.Textbox(label="Role/Position", placeholder="Role...")
|
| 661 |
audio_video_inputs.extend([audio_file, speaker_name, speaker_role])
|
| 662 |
all_inputs.extend(audio_video_inputs)
|
| 663 |
-
logger.info(f"{len(audio_video_inputs)} audio/video inputs created.")
|
| 664 |
with gr.TabItem("π URLs"):
|
| 665 |
-
logger.info("Creating URL input tabs.")
|
| 666 |
gr.Markdown("Add URLs to relevant web pages... Max 5.")
|
| 667 |
url_inputs = []
|
| 668 |
for i in range(1, 6):
|
| 669 |
url_textbox = gr.Textbox(label=f"URL {i}", placeholder="https://...")
|
| 670 |
url_inputs.append(url_textbox)
|
| 671 |
all_inputs.extend(url_inputs)
|
| 672 |
-
logger.info(f"{len(url_inputs)} URL inputs created.")
|
| 673 |
with gr.TabItem("π± Social Media"):
|
| 674 |
-
logger.info("Creating social media input tabs.")
|
| 675 |
gr.Markdown("Add URLs to social media posts... Max 3.")
|
| 676 |
social_inputs = []
|
| 677 |
for i in range(1, 4):
|
|
@@ -683,26 +436,17 @@ def create_demo():
|
|
| 683 |
social_context_textbox = gr.Textbox(label=f"Context", placeholder="Context...")
|
| 684 |
social_inputs.extend([social_url_textbox, social_name_textbox, social_context_textbox])
|
| 685 |
all_inputs.extend(social_inputs)
|
| 686 |
-
logger.info(f"{len(social_inputs)} social media inputs created.")
|
| 687 |
|
| 688 |
-
|
| 689 |
-
|
| 690 |
-
logger.info("Creating generate and clear buttons.")
|
| 691 |
-
generate_button = gr.Button("β¨ Generate News Article", variant="primary")
|
| 692 |
-
clear_button = gr.Button("π Clear All Inputs")
|
| 693 |
with gr.Tabs():
|
| 694 |
with gr.TabItem("π Generated News Article"):
|
| 695 |
-
logger.info("Creating news output textbox.")
|
| 696 |
news_output = gr.Textbox(label="Draft News Article", lines=20, show_copy_button=True, interactive=False)
|
| 697 |
with gr.TabItem("ποΈ Source Transcriptions & Logs"):
|
| 698 |
-
logger.info("Creating transcriptions/log output textbox.")
|
| 699 |
transcriptions_output = gr.Textbox(label="Transcriptions and Processing Log", lines=15, show_copy_button=True, interactive=False)
|
| 700 |
|
| 701 |
outputs_list = [news_output, transcriptions_output]
|
| 702 |
-
logger.info("Setting up event handlers.")
|
| 703 |
-
# AsegΓΊrate de que el botΓ³n llama a la funciΓ³n generate_news (aunque ahora estΓ© simplificada)
|
| 704 |
generate_button.click(fn=generate_news, inputs=all_inputs, outputs=outputs_list)
|
| 705 |
-
logger.info("Generate button click handler set.")
|
| 706 |
|
| 707 |
def clear_all_inputs_and_outputs():
|
| 708 |
logger.info("--- Clear All button clicked ---")
|
|
@@ -713,31 +457,21 @@ def create_demo():
|
|
| 713 |
elif isinstance(input_comp, gr.File): reset_values.append(None)
|
| 714 |
else: reset_values.append(None)
|
| 715 |
reset_values.extend(["", ""])
|
| 716 |
-
logger.info(
|
| 717 |
-
|
| 718 |
-
logger.info("Calling model reset from clear button handler.")
|
| 719 |
-
model_manager.reset_models(force=True)
|
| 720 |
-
except Exception as e:
|
| 721 |
-
logger.error(f"Error resetting models during clear operation: {e}")
|
| 722 |
-
logger.error(traceback.format_exc())
|
| 723 |
logger.info("--- Clear All operation finished ---")
|
| 724 |
return reset_values
|
| 725 |
|
| 726 |
clear_button.click(fn=clear_all_inputs_and_outputs, inputs=None, outputs=all_inputs + outputs_list)
|
| 727 |
-
|
| 728 |
-
logger.info("--- Gradio interface creation complete ---")
|
| 729 |
return demo
|
| 730 |
|
| 731 |
|
| 732 |
# --- main execution block remains the same ---
|
| 733 |
if __name__ == "__main__":
|
| 734 |
logger.info("--- Running main execution block ---")
|
| 735 |
-
logger.info("Creating Gradio demo instance...")
|
| 736 |
news_demo = create_demo()
|
| 737 |
-
logger.info("Gradio demo instance created.")
|
| 738 |
-
logger.info("Configuring Gradio queue...")
|
| 739 |
news_demo.queue()
|
| 740 |
-
logger.info("Gradio queue configured.")
|
| 741 |
logger.info("Launching Gradio interface...")
|
| 742 |
try:
|
| 743 |
news_demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
@@ -745,4 +479,4 @@ if __name__ == "__main__":
|
|
| 745 |
except Exception as launch_err:
|
| 746 |
logger.error(f"!!! CRITICAL Error during Gradio launch: {launch_err}")
|
| 747 |
logger.error(traceback.format_exc())
|
| 748 |
-
logger.info("--- Main execution block potentially finished
|
|
|
|
| 22 |
|
| 23 |
# Configure logging
|
| 24 |
logging.basicConfig(
|
| 25 |
+
level=logging.INFO,
|
| 26 |
+
format='%(asctime)s - %(levelname)s - %(filename)s:%(lineno)d - %(message)s'
|
| 27 |
)
|
| 28 |
logger = logging.getLogger(__name__)
|
| 29 |
|
| 30 |
+
logger.info("--- Starting App ---")
|
| 31 |
|
| 32 |
# Login to Hugging Face Hub if token is available
|
| 33 |
HUGGINGFACE_TOKEN = os.environ.get('HUGGINGFACE_TOKEN')
|
|
|
|
| 40 |
logger.error(f"Failed to login to Hugging Face Hub: {e}")
|
| 41 |
logger.error(traceback.format_exc())
|
| 42 |
else:
|
| 43 |
+
logger.warning("HUGGINGFACE_TOKEN environment variable not set.")
|
| 44 |
|
| 45 |
|
| 46 |
class ModelManager:
|
|
|
|
| 54 |
return cls._instance
|
| 55 |
|
| 56 |
def __init__(self):
|
| 57 |
+
if not hasattr(self, '_initialized') or not self._initialized:
|
| 58 |
logger.info("Initializing ModelManager attributes.")
|
| 59 |
self.tokenizer = None
|
| 60 |
self.model = None
|
|
|
|
| 65 |
self.last_used = time.time()
|
| 66 |
self.llm_loading = False
|
| 67 |
self.whisper_loading = False
|
| 68 |
+
self._initialized = True
|
| 69 |
|
| 70 |
def _cleanup_memory(self):
|
|
|
|
| 71 |
logger.info("Running garbage collection...")
|
| 72 |
collected_count = gc.collect()
|
| 73 |
logger.info(f"Garbage collected ({collected_count} objects).")
|
|
|
|
| 77 |
logger.info("CUDA cache cleared.")
|
| 78 |
|
| 79 |
def reset_llm(self):
|
|
|
|
| 80 |
logger.info("--- Attempting to reset LLM ---")
|
| 81 |
try:
|
| 82 |
+
if hasattr(self, 'model') and self.model is not None: del self.model; logger.info("LLM model deleted.")
|
| 83 |
+
if hasattr(self, 'tokenizer') and self.tokenizer is not None: del self.tokenizer; logger.info("LLM tokenizer deleted.")
|
| 84 |
+
if hasattr(self, 'text_pipeline') and self.text_pipeline is not None: del self.text_pipeline; logger.info("LLM pipeline deleted.")
|
| 85 |
+
self.model = None; self.tokenizer = None; self.text_pipeline = None
|
| 86 |
+
self.llm_loaded = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
self._cleanup_memory()
|
| 88 |
logger.info("LLM components reset successfully.")
|
| 89 |
+
except Exception as e: logger.error(f"!!! ERROR during LLM reset: {e}"); logger.error(traceback.format_exc())
|
|
|
|
|
|
|
| 90 |
|
| 91 |
def reset_whisper(self):
|
|
|
|
| 92 |
logger.info("--- Attempting to reset Whisper ---")
|
| 93 |
try:
|
| 94 |
+
if hasattr(self, 'whisper_model') and self.whisper_model is not None: del self.whisper_model; logger.info("Whisper model deleted.")
|
|
|
|
|
|
|
|
|
|
| 95 |
self.whisper_model = None
|
| 96 |
+
self.whisper_loaded = False
|
| 97 |
self._cleanup_memory()
|
| 98 |
logger.info("Whisper component reset successfully.")
|
| 99 |
+
except Exception as e: logger.error(f"!!! ERROR during Whisper reset: {e}"); logger.error(traceback.format_exc())
|
|
|
|
|
|
|
| 100 |
|
| 101 |
@spaces.GPU(duration=120)
|
| 102 |
def initialize_llm(self):
|
|
|
|
| 103 |
logger.info("Attempting to initialize LLM.")
|
| 104 |
+
if self.llm_loading: logger.info("LLM initialization already in progress."); return True
|
| 105 |
+
if self.llm_loaded: logger.info("LLM already initialized."); self.last_used = time.time(); return True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
self.llm_loading = True
|
| 107 |
logger.info("Starting LLM initialization...")
|
| 108 |
try:
|
| 109 |
MODEL_NAME = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
| 110 |
logger.info(f"Using LLM model: {MODEL_NAME}")
|
|
|
|
|
|
|
| 111 |
self.tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=HUGGINGFACE_TOKEN, use_fast=True)
|
| 112 |
+
if self.tokenizer.pad_token is None: self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 113 |
+
self.model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, token=HUGGINGFACE_TOKEN, device_map="auto", torch_dtype=torch.float16, low_cpu_mem_usage=True, offload_folder="offload", offload_state_dict=True)
|
| 114 |
+
self.text_pipeline = pipeline("text-generation", model=self.model, tokenizer=self.tokenizer, torch_dtype=torch.float16, device_map="auto", max_length=1024)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
logger.info("LLM initialized successfully.")
|
| 116 |
+
self.last_used = time.time(); self.llm_loaded = True; self.llm_loading = False; return True
|
| 117 |
+
except Exception as e: logger.error(f"!!! ERROR during LLM initialization: {e}"); logger.error(traceback.format_exc()); self.reset_llm(); self.llm_loading = False; raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
@spaces.GPU(duration=120)
|
| 120 |
def initialize_whisper(self):
|
|
|
|
| 121 |
logger.info("Attempting to initialize Whisper.")
|
| 122 |
+
if self.whisper_loading: logger.info("Whisper initialization already in progress."); return True
|
| 123 |
+
if self.whisper_loaded: logger.info("Whisper already initialized."); self.last_used = time.time(); return True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
self.whisper_loading = True
|
| 125 |
logger.info("Starting Whisper initialization...")
|
| 126 |
try:
|
| 127 |
WHISPER_MODEL_NAME = "tiny"
|
| 128 |
+
self.whisper_model = whisper.load_model(WHISPER_MODEL_NAME, device="cuda" if torch.cuda.is_available() else "cpu", download_root="/tmp/whisper")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
logger.info(f"Whisper model '{WHISPER_MODEL_NAME}' loaded successfully.")
|
| 130 |
+
self.last_used = time.time(); self.whisper_loaded = True; self.whisper_loading = False; return True
|
| 131 |
+
except Exception as e: logger.error(f"!!! ERROR during Whisper initialization: {e}"); logger.error(traceback.format_exc()); self.reset_whisper(); self.whisper_loading = False; raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
|
| 133 |
def check_llm_initialized(self):
|
|
|
|
| 134 |
logger.info("Checking if LLM is initialized.")
|
| 135 |
if not self.llm_loaded:
|
| 136 |
logger.info("LLM not initialized, attempting initialization...")
|
| 137 |
+
if not self.llm_loading: self.initialize_llm(); logger.info("LLM initialization completed by check_llm_initialized.")
|
|
|
|
|
|
|
| 138 |
else:
|
| 139 |
+
logger.info("LLM initialization already in progress. Waiting briefly.")
|
| 140 |
time.sleep(10)
|
| 141 |
+
if not self.llm_loaded: raise RuntimeError("LLM initialization timed out or failed after waiting.")
|
| 142 |
+
else: logger.info("LLM seems initialized now after waiting.")
|
| 143 |
+
else: logger.info("LLM was already initialized.")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
self.last_used = time.time()
|
| 145 |
|
|
|
|
| 146 |
def check_whisper_initialized(self):
|
|
|
|
| 147 |
logger.info("Checking if Whisper is initialized.")
|
| 148 |
if not self.whisper_loaded:
|
| 149 |
logger.info("Whisper model not initialized, attempting initialization...")
|
| 150 |
+
if not self.whisper_loading: self.initialize_whisper(); logger.info("Whisper initialization completed by check_whisper_initialized.")
|
|
|
|
|
|
|
| 151 |
else:
|
| 152 |
+
logger.info("Whisper initialization already in progress. Waiting briefly.")
|
| 153 |
time.sleep(10)
|
| 154 |
+
if not self.whisper_loaded: raise RuntimeError("Whisper initialization timed out or failed after waiting.")
|
| 155 |
+
else: logger.info("Whisper seems initialized now after waiting.")
|
| 156 |
+
else: logger.info("Whisper was already initialized.")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
self.last_used = time.time()
|
| 158 |
|
| 159 |
def reset_models(self, force=False):
|
| 160 |
+
if force: logger.info("Forcing reset of all models."); self.reset_llm(); self.reset_whisper()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
|
| 162 |
# Create global model manager instance
|
| 163 |
logger.info("Creating global ModelManager instance.")
|
| 164 |
model_manager = ModelManager()
|
| 165 |
|
|
|
|
| 166 |
# --- Functions: download_social_media_video, convert_video_to_audio, etc. ---
|
| 167 |
+
# --- Kept exactly the same as the previous full version ---
|
|
|
|
|
|
|
| 168 |
@lru_cache(maxsize=16)
|
| 169 |
def download_social_media_video(url):
|
| 170 |
+
logger.info(f"Attempting social download: {url}")
|
|
|
|
| 171 |
temp_dir = tempfile.mkdtemp()
|
| 172 |
output_template = os.path.join(temp_dir, '%(id)s.%(ext)s')
|
| 173 |
final_audio_file_path = None
|
| 174 |
+
ydl_opts = {'format': 'bestaudio/best', 'postprocessors': [{'key': 'FFmpegExtractAudio', 'preferredcodec': 'mp3', 'preferredquality': '192'}], 'outtmpl': output_template, 'quiet': True, 'no_warnings': True, 'nocheckcertificate': True, 'retries': 3, 'socket_timeout': 15, 'cachedir': False}
|
|
|
|
|
|
|
|
|
|
| 175 |
try:
|
| 176 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl: info_dict = ydl.extract_info(url, download=True)
|
| 177 |
+
found_files = [f for f in os.listdir(temp_dir) if f.endswith('.mp3')]
|
| 178 |
+
if not found_files: raise FileNotFoundError(f"Downloaded MP3 not found in {temp_dir}")
|
| 179 |
+
final_audio_file_path = os.path.join(temp_dir, found_files[0])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
with open(final_audio_file_path, 'rb') as f: audio_content = f.read()
|
|
|
|
| 181 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_output_file:
|
| 182 |
+
temp_output_file.write(audio_content); final_path_for_gradio = temp_output_file.name
|
| 183 |
+
logger.info(f"Social audio saved to: {final_path_for_gradio}")
|
|
|
|
| 184 |
return final_path_for_gradio
|
| 185 |
+
except yt_dlp.utils.DownloadError as e: logger.error(f"yt-dlp error {url}: {e}"); return None
|
| 186 |
+
except Exception as e: logger.error(f"Download error {url}: {e}"); logger.error(traceback.format_exc()); return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
finally:
|
| 188 |
if os.path.exists(temp_dir):
|
| 189 |
+
try: import shutil; shutil.rmtree(temp_dir)
|
| 190 |
+
except Exception as cleanup_e: logger.warning(f"Cleanup failed {temp_dir}: {cleanup_e}")
|
|
|
|
|
|
|
|
|
|
| 191 |
|
| 192 |
def convert_video_to_audio(video_file_path):
|
| 193 |
+
logger.info(f"Converting video: {video_file_path}")
|
|
|
|
| 194 |
output_file_path = None
|
| 195 |
try:
|
| 196 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_file: output_file_path = temp_file.name
|
|
|
|
| 197 |
command = ["ffmpeg", "-i", video_file_path, "-vn", "-acodec", "libmp3lame", "-ab", "192k", "-ar", "44100", "-ac", "2", output_file_path, "-y", "-loglevel", "error"]
|
| 198 |
+
subprocess.run(command, check=True, capture_output=True, text=True, timeout=120)
|
| 199 |
+
if not os.path.exists(output_file_path) or os.path.getsize(output_file_path) == 0: raise RuntimeError("ffmpeg output empty")
|
| 200 |
+
logger.info(f"Video converted to: {output_file_path}")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
return output_file_path
|
| 202 |
+
except subprocess.CalledProcessError as e: logger.error(f"ffmpeg fail {video_file_path}: {e.stderr}"); raise RuntimeError(f"ffmpeg failed: {e.stderr}") from e
|
| 203 |
+
except subprocess.TimeoutExpired as e: logger.error(f"ffmpeg timeout {video_file_path}"); raise RuntimeError("ffmpeg timed out") from e
|
| 204 |
+
except Exception as e: logger.error(f"Video conversion error {video_file_path}: {e}"); logger.error(traceback.format_exc()); raise
|
| 205 |
+
finally:
|
| 206 |
+
if output_file_path and os.path.exists(output_file_path) and ( 'e' in locals() or (not os.path.exists(output_file_path) or os.path.getsize(output_file_path) == 0)):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
try: os.remove(output_file_path)
|
| 208 |
except: pass
|
|
|
|
| 209 |
|
| 210 |
def preprocess_audio(input_audio_path):
|
| 211 |
+
logger.info(f"Preprocessing audio: {input_audio_path}")
|
|
|
|
| 212 |
output_path = None
|
| 213 |
try:
|
| 214 |
+
if not os.path.exists(input_audio_path): raise FileNotFoundError(f"Preprocessing input not found: {input_audio_path}")
|
|
|
|
|
|
|
|
|
|
| 215 |
audio = AudioSegment.from_file(input_audio_path)
|
|
|
|
|
|
|
|
|
|
| 216 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_file:
|
| 217 |
+
output_path = temp_file.name; audio.export(output_path, format="mp3")
|
| 218 |
+
logger.info(f"Audio preprocessed to: {output_path}")
|
|
|
|
| 219 |
return output_path
|
| 220 |
+
except FileNotFoundError as e: logger.error(f"Preprocessing file not found: {e}"); raise
|
| 221 |
+
except Exception as e: logger.error(f"Preprocessing error {input_audio_path}: {e}"); logger.error(traceback.format_exc()); raise
|
| 222 |
+
finally:
|
| 223 |
+
if 'e' in locals() and output_path and os.path.exists(output_path):
|
| 224 |
+
try: os.remove(output_path)
|
| 225 |
+
except: pass
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
|
| 227 |
@spaces.GPU(duration=300)
|
| 228 |
def transcribe_audio_or_video(file_input):
|
| 229 |
+
logger.info(f"--- Starting transcription: {type(file_input)} ---")
|
| 230 |
+
audio_file_to_transcribe = None; temp_files_to_clean = []; transcription = ""
|
|
|
|
|
|
|
| 231 |
try:
|
| 232 |
+
logger.info("Checking Whisper model..."); model_manager.check_whisper_initialized()
|
|
|
|
|
|
|
|
|
|
| 233 |
if file_input is None: return ""
|
| 234 |
+
if isinstance(file_input, str): input_path = file_input
|
| 235 |
+
elif hasattr(file_input, 'name') and file_input.name: input_path = file_input.name
|
| 236 |
+
else: raise TypeError("Invalid input type.")
|
| 237 |
+
if not os.path.exists(input_path): raise FileNotFoundError(f"Input not found: {input_path}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 238 |
file_extension = os.path.splitext(input_path)[1].lower()
|
|
|
|
|
|
|
| 239 |
if file_extension in ['.mp4', '.avi', '.mov', '.mkv', '.webm']:
|
|
|
|
| 240 |
converted_audio_path = convert_video_to_audio(input_path)
|
| 241 |
temp_files_to_clean.append(converted_audio_path); audio_file_to_process = converted_audio_path
|
| 242 |
+
elif file_extension in ['.mp3', '.wav', '.ogg', '.flac', '.m4a', '.aac']: audio_file_to_process = input_path
|
| 243 |
+
else: raise ValueError(f"Unsupported type: {file_extension}")
|
|
|
|
|
|
|
|
|
|
| 244 |
try:
|
|
|
|
| 245 |
preprocessed_audio_path = preprocess_audio(audio_file_to_process)
|
| 246 |
if preprocessed_audio_path != audio_file_to_process: temp_files_to_clean.append(preprocessed_audio_path)
|
| 247 |
audio_file_to_transcribe = preprocessed_audio_path
|
| 248 |
+
except Exception as preprocess_err: logger.warning(f"Preprocessing failed ({preprocess_err}), using original."); audio_file_to_transcribe = audio_file_to_process
|
| 249 |
+
if not os.path.exists(audio_file_to_transcribe): raise FileNotFoundError(f"File to transcribe lost: {audio_file_to_transcribe}")
|
| 250 |
+
logger.info(f"Transcribing: {audio_file_to_transcribe}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 251 |
with torch.inference_mode():
|
| 252 |
+
use_fp16 = torch.cuda.is_available()
|
| 253 |
result = model_manager.whisper_model.transcribe(audio_file_to_transcribe, fp16=use_fp16)
|
| 254 |
+
if not result or "text" not in result: raise RuntimeError("Transcription empty result")
|
| 255 |
+
transcription = result.get("text", "")
|
| 256 |
+
logger.info(f"Transcription success: '{transcription[:100]}...'")
|
| 257 |
+
except Exception as e: logger.error(f"!!! Transcription failed: {e}"); logger.error(traceback.format_exc()); transcription = f"Error during transcription: {e}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 258 |
finally:
|
| 259 |
+
logger.debug(f"--- Cleaning {len(temp_files_to_clean)} temp transcription files ---")
|
| 260 |
for temp_file in temp_files_to_clean:
|
| 261 |
try:
|
| 262 |
+
if os.path.exists(temp_file): os.remove(temp_file)
|
| 263 |
+
except Exception as e: logger.warning(f"Cleanup failed {temp_file}: {e}")
|
|
|
|
| 264 |
return transcription
|
| 265 |
|
| 266 |
@lru_cache(maxsize=16)
|
| 267 |
def read_document(document_path):
|
| 268 |
+
logger.info(f"Reading document: {document_path}")
|
|
|
|
| 269 |
try:
|
| 270 |
+
if not os.path.exists(document_path): raise FileNotFoundError(f"Doc not found: {document_path}")
|
| 271 |
+
ext = os.path.splitext(document_path)[1].lower(); logger.debug(f"Doc type: {ext}")
|
| 272 |
content = ""
|
| 273 |
+
if ext == ".pdf":
|
|
|
|
| 274 |
doc = fitz.open(document_path)
|
| 275 |
+
if doc.is_encrypted and not doc.authenticate(""): raise ValueError("Encrypted PDF")
|
|
|
|
|
|
|
| 276 |
content = "\n".join([page.get_text() for page in doc]); doc.close()
|
| 277 |
+
elif ext == ".docx": doc = docx.Document(document_path); content = "\n".join([p.text for p in doc.paragraphs])
|
| 278 |
+
elif ext in (".xlsx", ".xls"):
|
| 279 |
+
xls = pd.ExcelFile(document_path); parts = []
|
| 280 |
+
for sheet in xls.sheet_names: df = pd.read_excel(xls, sheet_name=sheet); parts.append(f"--- {sheet} ---\n{df.to_string()}")
|
| 281 |
+
content = "\n\n".join(parts).strip()
|
| 282 |
+
elif ext == ".csv":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 283 |
try:
|
| 284 |
+
with open(document_path, 'rb') as f: import chardet; enc = chardet.detect(f.read())['encoding']
|
| 285 |
+
df = pd.read_csv(document_path, encoding=enc)
|
| 286 |
+
except Exception as e1:
|
| 287 |
+
logger.warning(f"CSV parse failed ({e1}), trying alternatives...")
|
| 288 |
+
try: df = pd.read_csv(document_path, sep=';', encoding=enc)
|
| 289 |
+
except Exception as e2: df = pd.read_csv(document_path, encoding='latin1') # Last resort
|
|
|
|
|
|
|
|
|
|
|
|
|
| 290 |
content = df.to_string()
|
| 291 |
+
else: return "Unsupported file type."
|
| 292 |
+
logger.info(f"Doc read success. Length: {len(content)}")
|
| 293 |
return content
|
| 294 |
+
except Exception as e: logger.error(f"!!! Read doc error: {e}"); logger.error(traceback.format_exc()); return f"Error reading document: {e}"
|
|
|
|
|
|
|
| 295 |
|
| 296 |
@lru_cache(maxsize=16)
|
| 297 |
def read_url(url):
|
| 298 |
+
logger.info(f"Reading URL: {url}")
|
|
|
|
| 299 |
if not url or not url.strip().startswith('http'): return ""
|
| 300 |
try:
|
| 301 |
+
headers = {'User-Agent': 'Mozilla/5.0 ...', 'Accept': 'text/html...', 'Accept-Language': 'en-US,en;q=0.9', 'Connection': 'keep-alive'}
|
|
|
|
| 302 |
response = requests.get(url, headers=headers, timeout=20, allow_redirects=True)
|
|
|
|
| 303 |
response.raise_for_status()
|
| 304 |
+
ct = response.headers.get('content-type', '').lower()
|
| 305 |
+
if not ('html' in ct or 'text' in ct): return f"Error: Non-text content type: {ct}"
|
| 306 |
+
enc = response.encoding if response.encoding else response.apparent_encoding
|
| 307 |
+
html = response.content.decode(enc or 'utf-8', errors='ignore')
|
| 308 |
+
soup = BeautifulSoup(html, 'html.parser')
|
| 309 |
+
for tag in soup(["script", "style", "meta", "noscript", "iframe", "header", "footer", "nav", "aside", "form", "button", "link", "head"]): tag.extract()
|
| 310 |
+
main = (soup.find("main") or soup.find("article") or soup.find("div", class_=["content", "main", "post-content", "entry-content", "article-body", "story-content"]) or soup.find("div", id=["content", "main", "article", "story"]))
|
| 311 |
+
text = main.get_text(separator='\n', strip=True) if main else soup.body.get_text(separator='\n', strip=True) if soup.body else soup.get_text(separator='\n', strip=True)
|
| 312 |
+
lines = [line.strip() for line in text.split('\n') if line.strip()]; cleaned = "\n".join(lines)
|
| 313 |
+
if not cleaned: return "Error: Could not extract text."
|
| 314 |
+
max_c = 15000; final = (cleaned[:max_c] + "... [truncated]") if len(cleaned) > max_c else cleaned
|
| 315 |
+
logger.info(f"URL read success. Length: {len(final)}")
|
| 316 |
+
return final
|
| 317 |
+
except Exception as e: logger.error(f"!!! Read URL error: {e}"); logger.error(traceback.format_exc()); return f"Error reading URL: {e}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 318 |
|
| 319 |
def process_social_media_url(url):
|
| 320 |
+
logger.info(f"--- Processing social URL: {url} ---")
|
|
|
|
| 321 |
if not url or not url.strip().startswith('http'): return None
|
| 322 |
+
text = None; video = None; audio_file = None
|
| 323 |
+
try: text_res = read_url(url); text = text_res if text_res and not text_res.startswith("Error:") else None
|
| 324 |
+
except Exception as e: logger.error(f"Social text read error: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 325 |
try:
|
| 326 |
+
audio_file = download_social_media_video(url)
|
| 327 |
+
if audio_file: video_res = transcribe_audio_or_video(audio_file); video = video_res if video_res and not video_res.startswith("Error:") else None
|
| 328 |
+
except Exception as e: logger.error(f"Social audio proc error: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 329 |
finally:
|
| 330 |
+
if audio_file and os.path.exists(audio_file):
|
| 331 |
+
try: os.remove(audio_file)
|
| 332 |
+
except Exception as e: logger.warning(f"Social cleanup fail {audio_file}: {e}")
|
| 333 |
+
logger.debug(f"--- Finished social URL: {url} ---")
|
| 334 |
+
if text or video: return {"text": text or "", "video": video or ""}
|
| 335 |
+
else: return None
|
|
|
|
| 336 |
|
| 337 |
# ==============================================================
|
| 338 |
# ========= SIMPLIFIED generate_news FOR DEBUGGING =============
|
|
|
|
| 374 |
# ==============================================================
|
| 375 |
|
| 376 |
|
| 377 |
+
# --- create_demo function ---
|
| 378 |
+
# --- MODIFIED: Removed file_types from gr.File ---
|
| 379 |
def create_demo():
|
| 380 |
"""Creates the Gradio interface"""
|
| 381 |
logger.info("--- Creating Gradio interface ---")
|
|
|
|
| 385 |
all_inputs = []
|
| 386 |
with gr.Row():
|
| 387 |
with gr.Column(scale=2):
|
|
|
|
| 388 |
instructions = gr.Textbox(label="Instructions for the News Article", placeholder="Enter specific instructions...", lines=2)
|
| 389 |
all_inputs.append(instructions)
|
|
|
|
| 390 |
facts = gr.Textbox(label="Main Facts", placeholder="Describe the most important facts...", lines=4)
|
| 391 |
all_inputs.append(facts)
|
| 392 |
with gr.Row():
|
|
|
|
| 393 |
size_slider = gr.Slider(label="Approximate Length (words)", minimum=100, maximum=700, value=250, step=50)
|
| 394 |
all_inputs.append(size_slider)
|
|
|
|
| 395 |
tone_dropdown = gr.Dropdown(label="Tone of the News Article", choices=["neutral", "serious", "formal", "urgent", "investigative", "human-interest", "lighthearted"], value="neutral")
|
| 396 |
all_inputs.append(tone_dropdown)
|
| 397 |
with gr.Column(scale=3):
|
| 398 |
with gr.Tabs():
|
| 399 |
with gr.TabItem("π Documents"):
|
|
|
|
| 400 |
gr.Markdown("Upload relevant documents (PDF, DOCX, XLSX, CSV). Max 5.")
|
| 401 |
doc_inputs = []
|
| 402 |
for i in range(1, 6):
|
| 403 |
+
# *** CHANGED: Removed file_types ***
|
| 404 |
+
doc_file = gr.File(label=f"Document {i}", file_count="single")
|
| 405 |
doc_inputs.append(doc_file)
|
| 406 |
all_inputs.extend(doc_inputs)
|
|
|
|
| 407 |
with gr.TabItem("π Audio/Video"):
|
|
|
|
| 408 |
gr.Markdown("Upload audio or video files... Max 5 sources.")
|
| 409 |
audio_video_inputs = []
|
| 410 |
for i in range(1, 6):
|
| 411 |
with gr.Group():
|
| 412 |
gr.Markdown(f"**Source {i}**")
|
| 413 |
+
# *** CHANGED: Removed file_types ***
|
| 414 |
+
audio_file = gr.File(label=f"Audio/Video File {i}")
|
| 415 |
with gr.Row():
|
| 416 |
speaker_name = gr.Textbox(label="Speaker Name", placeholder="Name...")
|
| 417 |
speaker_role = gr.Textbox(label="Role/Position", placeholder="Role...")
|
| 418 |
audio_video_inputs.extend([audio_file, speaker_name, speaker_role])
|
| 419 |
all_inputs.extend(audio_video_inputs)
|
|
|
|
| 420 |
with gr.TabItem("π URLs"):
|
|
|
|
| 421 |
gr.Markdown("Add URLs to relevant web pages... Max 5.")
|
| 422 |
url_inputs = []
|
| 423 |
for i in range(1, 6):
|
| 424 |
url_textbox = gr.Textbox(label=f"URL {i}", placeholder="https://...")
|
| 425 |
url_inputs.append(url_textbox)
|
| 426 |
all_inputs.extend(url_inputs)
|
|
|
|
| 427 |
with gr.TabItem("π± Social Media"):
|
|
|
|
| 428 |
gr.Markdown("Add URLs to social media posts... Max 3.")
|
| 429 |
social_inputs = []
|
| 430 |
for i in range(1, 4):
|
|
|
|
| 436 |
social_context_textbox = gr.Textbox(label=f"Context", placeholder="Context...")
|
| 437 |
social_inputs.extend([social_url_textbox, social_name_textbox, social_context_textbox])
|
| 438 |
all_inputs.extend(social_inputs)
|
|
|
|
| 439 |
|
| 440 |
+
generate_button = gr.Button("β¨ Generate News Article", variant="primary")
|
| 441 |
+
clear_button = gr.Button("π Clear All Inputs")
|
|
|
|
|
|
|
|
|
|
| 442 |
with gr.Tabs():
|
| 443 |
with gr.TabItem("π Generated News Article"):
|
|
|
|
| 444 |
news_output = gr.Textbox(label="Draft News Article", lines=20, show_copy_button=True, interactive=False)
|
| 445 |
with gr.TabItem("ποΈ Source Transcriptions & Logs"):
|
|
|
|
| 446 |
transcriptions_output = gr.Textbox(label="Transcriptions and Processing Log", lines=15, show_copy_button=True, interactive=False)
|
| 447 |
|
| 448 |
outputs_list = [news_output, transcriptions_output]
|
|
|
|
|
|
|
| 449 |
generate_button.click(fn=generate_news, inputs=all_inputs, outputs=outputs_list)
|
|
|
|
| 450 |
|
| 451 |
def clear_all_inputs_and_outputs():
|
| 452 |
logger.info("--- Clear All button clicked ---")
|
|
|
|
| 457 |
elif isinstance(input_comp, gr.File): reset_values.append(None)
|
| 458 |
else: reset_values.append(None)
|
| 459 |
reset_values.extend(["", ""])
|
| 460 |
+
try: logger.info("Calling model reset from clear button handler."); model_manager.reset_models(force=True)
|
| 461 |
+
except Exception as e: logger.error(f"Error resetting models during clear: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 462 |
logger.info("--- Clear All operation finished ---")
|
| 463 |
return reset_values
|
| 464 |
|
| 465 |
clear_button.click(fn=clear_all_inputs_and_outputs, inputs=None, outputs=all_inputs + outputs_list)
|
| 466 |
+
logger.info("--- Gradio interface creation complete ---")
|
|
|
|
| 467 |
return demo
|
| 468 |
|
| 469 |
|
| 470 |
# --- main execution block remains the same ---
|
| 471 |
if __name__ == "__main__":
|
| 472 |
logger.info("--- Running main execution block ---")
|
|
|
|
| 473 |
news_demo = create_demo()
|
|
|
|
|
|
|
| 474 |
news_demo.queue()
|
|
|
|
| 475 |
logger.info("Launching Gradio interface...")
|
| 476 |
try:
|
| 477 |
news_demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
| 479 |
except Exception as launch_err:
|
| 480 |
logger.error(f"!!! CRITICAL Error during Gradio launch: {launch_err}")
|
| 481 |
logger.error(traceback.format_exc())
|
| 482 |
+
logger.info("--- Main execution block potentially finished ---")
|