Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,115 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
"""
|
5 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
"""
|
7 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
def respond(
|
11 |
message,
|
@@ -15,6 +119,22 @@ def respond(
|
|
15 |
temperature,
|
16 |
top_p,
|
17 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
for val in history:
|
@@ -22,7 +142,7 @@ def respond(
|
|
22 |
messages.append({"role": "user", "content": val[0]})
|
23 |
if val[1]:
|
24 |
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
messages.append({"role": "user", "content": message})
|
27 |
|
28 |
response = ""
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
+
from huggingface_hub import login
|
4 |
+
import re
|
5 |
+
import pandas as pd
|
6 |
+
from langchain.schema import Document
|
7 |
+
from langchain.text_splitter import TokenTextSplitter
|
8 |
+
from transformers import AutoTokenizer
|
9 |
+
import copy
|
10 |
+
from langchain_community.retrievers import BM25Retriever
|
11 |
"""
|
12 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
13 |
"""
|
14 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
15 |
|
16 |
+
# Pre-processing
|
17 |
+
def preprocess_for_bm25(text):
|
18 |
+
# Replace "..." with a unique placeholder
|
19 |
+
text = text.replace("...", " _ELLIPSIS_ ")
|
20 |
+
|
21 |
+
# Add space before and after punctuation (except "_ELLIPSIS_")
|
22 |
+
text = re.sub(r'([.,!?()"])', r' \1 ', text)
|
23 |
+
|
24 |
+
# Restore "..." from the placeholder
|
25 |
+
text = text.replace("_ELLIPSIS_", "...")
|
26 |
+
|
27 |
+
# Normalize spaces
|
28 |
+
text = re.sub(r'\s+', ' ', text).strip()
|
29 |
+
text = text.lower()
|
30 |
+
return text
|
31 |
+
|
32 |
+
"""Pre-processing"""
|
33 |
+
# Convert DataFrame to documents
|
34 |
+
documents = []
|
35 |
+
for _, row in df1.iterrows():
|
36 |
+
biography_text = row['Story']
|
37 |
+
documents.append(Document(
|
38 |
+
page_content= biography_text, # Text of the chunk
|
39 |
+
metadata= {
|
40 |
+
'champion_name': row['Champion'],
|
41 |
+
'role': row['Role']
|
42 |
+
))
|
43 |
+
|
44 |
+
"""Chunking"""
|
45 |
+
|
46 |
+
# Specify the model name
|
47 |
+
EMBEDDING_MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta"
|
48 |
+
tokenizer_name = EMBEDDING_MODEL_NAME
|
49 |
+
|
50 |
+
# Token splitting for more context split
|
51 |
+
text_splitter = TokenTextSplitter.from_huggingface_tokenizer(
|
52 |
+
tokenizer=AutoTokenizer.from_pretrained(tokenizer_name),
|
53 |
+
chunk_size=300,
|
54 |
+
chunk_overlap=30
|
55 |
+
)
|
56 |
+
|
57 |
+
chunks = text_splitter.split_documents(documents) # chunks used for LLM generation
|
58 |
+
|
59 |
+
chunks_bm25 = copy.deepcopy(chunks) # Creates an independent copy, chunks used for BM25 retriever
|
60 |
+
|
61 |
+
for i, doc in enumerate(chunks_bm25):
|
62 |
+
doc.page_content = preprocess_for_bm25(doc.page_content) # Modify page_content in place
|
63 |
+
doc.metadata["index"] = i # Add an index for tracking
|
64 |
+
|
65 |
+
for i, doc in enumerate(chunks):
|
66 |
+
doc.metadata["index"] = i # Add an index for tracking
|
67 |
+
|
68 |
+
"""Retriever"""
|
69 |
+
bm25_retriever = BM25Retriever.from_documents(chunks_bm25, k = 2) # 2 most similar contexts
|
70 |
+
|
71 |
+
|
72 |
+
"""Chain"""
|
73 |
+
|
74 |
+
from langchain_core.runnables.passthrough import RunnablePassthrough
|
75 |
+
from langchain.prompts import ChatPromptTemplate
|
76 |
+
from langchain_core.output_parsers.string import StrOutputParser
|
77 |
+
from langchain_community.llms.huggingface_hub import HuggingFaceHub
|
78 |
+
import os
|
79 |
+
from langchain_core.runnables import RunnableLambda
|
80 |
+
|
81 |
+
|
82 |
+
prompt = f"""
|
83 |
+
You are an expert in League of Legends (LoL) lore. You will only answer questions related to the champions and their stories within the game.
|
84 |
+
|
85 |
+
Instructions:
|
86 |
+
1. **Only use the context provided below** to answer the question. You should reference the context directly to ensure your answer is as relevant as possible.
|
87 |
+
2. If the question is outside the scope of League of Legends lore, respond by saying: *"Please ask something related to League of Legends lore."*
|
88 |
+
3. If the provided context does not provide a clear answer or you're unsure, respond by saying: *"I'm unsure based on the provided context."*
|
89 |
+
|
90 |
+
Context: {context}
|
91 |
+
|
92 |
+
Question: {question}
|
93 |
+
|
94 |
+
Answer:
|
95 |
+
|
96 |
+
"""
|
97 |
+
prompt_template = ChatPromptTemplate.from_template(prompt)
|
98 |
+
llm = HuggingFaceHub(
|
99 |
+
repo_id="HuggingFaceH4/zephyr-7b-beta",
|
100 |
+
model_kwargs={"temperature": 0.1, "max_length": 50, "return_full_text" : False}
|
101 |
+
)
|
102 |
+
|
103 |
+
def ra(user_question):
|
104 |
+
prompt = f"You know things about League of Legends. Please correct the following question for grammar and clarity.Do not give explaination:\n{user_question}\nCorrected question:"
|
105 |
+
|
106 |
+
# Pass the prompt to the LLM and get the response
|
107 |
+
rephrased_query = llm(prompt) # Replace `llm` with the appropriate LLM function or API call
|
108 |
+
new_query = rephrased_query.strip()
|
109 |
+
return {'context' : retriever(new_query), 'question': new_query}
|
110 |
+
# chain = RunnablePassthrough() | RunnableLambda(ra) | prompt_template | client.chat_completion() | StrOutputParser() for notebook
|
111 |
+
|
112 |
+
"""-------------------------------------------------------------------"""
|
113 |
|
114 |
def respond(
|
115 |
message,
|
|
|
119 |
temperature,
|
120 |
top_p,
|
121 |
):
|
122 |
+
res = ra(val[1])
|
123 |
+
system_message = f"""
|
124 |
+
You are an expert in League of Legends (LoL) lore. You will only answer questions related to the champions and their stories within the game.
|
125 |
+
|
126 |
+
Instructions:
|
127 |
+
1. **Only use the context provided below** to answer the question. You should reference the context directly to ensure your answer is as relevant as possible.
|
128 |
+
2. If the question is outside the scope of League of Legends lore, respond by saying: *"Please ask something related to League of Legends lore."*
|
129 |
+
3. If the provided context does not provide a clear answer or you're unsure, respond by saying: *"I'm unsure based on the provided context."*
|
130 |
+
|
131 |
+
Context: {res['context']}
|
132 |
+
|
133 |
+
Question: {res['question']}
|
134 |
+
|
135 |
+
Answer:
|
136 |
+
|
137 |
+
"""
|
138 |
messages = [{"role": "system", "content": system_message}]
|
139 |
|
140 |
for val in history:
|
|
|
142 |
messages.append({"role": "user", "content": val[0]})
|
143 |
if val[1]:
|
144 |
messages.append({"role": "assistant", "content": val[1]})
|
145 |
+
|
146 |
messages.append({"role": "user", "content": message})
|
147 |
|
148 |
response = ""
|