# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ Pix2Seq Transformer class. Copy-paste from torch.nn.Transformer with modifications: * positional encodings are passed in MHattention * extra LN at the end of encoder is removed * decoder returns a stack of activations from all decoding layers """ import copy from typing import Optional, List import torch import torch.nn.functional as F from torch import nn, Tensor from .attention_layer import Attention class Transformer(nn.Module): def __init__(self, d_model=512, nhead=8, num_encoder_layers=6, num_decoder_layers=6, dim_feedforward=1024, dropout=0.1, activation="relu", normalize_before=False, num_vocal=2094, pred_eos=False, tokenizer=None): super().__init__() encoder_layer = TransformerEncoderLayer( d_model, nhead, dim_feedforward, dropout, activation, normalize_before) encoder_norm = nn.LayerNorm(d_model) if normalize_before else None self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm) decoder_layer = TransformerDecoderLayer( d_model, nhead, dim_feedforward, dropout, activation, normalize_before) decoder_norm = nn.LayerNorm(d_model) self.decoder = TransformerDecoder(decoder_layer, num_decoder_layers, decoder_norm) self._reset_parameters() self.num_vocal = num_vocal self.vocal_classifier = nn.Linear(d_model, num_vocal) self.det_embed = nn.Embedding(1, d_model) self.vocal_embed = nn.Embedding(self.num_vocal - 2, d_model) self.pred_eos = pred_eos self.d_model = d_model self.nhead = nhead self.num_decoder_layers = num_decoder_layers self.tokenizer = tokenizer def _reset_parameters(self): for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) def forward(self, src, input_seq, mask, pos_embed, max_len=500): """ Args: src: shape[B, C, H, W] input_seq: shape[B, 501, C] for training and shape[B, 1, C] for inference mask: shape[B, H, W] pos_embed: shape[B, C, H, W] """ # flatten NxCxHxW to HWxNxC bs = src.shape[0] src = src.flatten(2).permute(2, 0, 1) mask = mask.flatten(1) pos_embed = pos_embed.flatten(2).permute(2, 0, 1) memory = self.encoder(src, src_key_padding_mask=mask, pos=pos_embed) pre_kv = [torch.as_tensor([[], []], device=memory.device) for _ in range(self.num_decoder_layers)] if self.training: input_seq = input_seq.clamp(max=self.num_vocal - 3) input_embed = torch.cat( [self.det_embed.weight.unsqueeze(0).repeat(bs, 1, 1), self.vocal_embed(input_seq)], dim=1) input_embed = input_embed.transpose(0, 1) num_seq = input_embed.shape[0] self_attn_mask = torch.triu(torch.ones((num_seq, num_seq)), diagonal=1).bool().to(input_embed.device) hs, pre_kv = self.decoder( input_embed, memory, memory_key_padding_mask=mask, pos=pos_embed, pre_kv_list=pre_kv, self_attn_mask=self_attn_mask) # hs: N x B x D pred_seq_logits = self.vocal_classifier(hs.transpose(0, 1)) return pred_seq_logits else: end = torch.zeros(bs).bool().to(memory.device) end_lens = torch.zeros(bs).long().to(memory.device) input_embed = self.det_embed.weight.unsqueeze(0).repeat(bs, 1, 1).transpose(0, 1) states, pred_token = [None] * bs, [None] * bs pred_seq, pred_scores = [], [] for seq_i in range(max_len): hs, pre_kv = self.decoder( input_embed, memory, memory_key_padding_mask=mask, pos=pos_embed, pre_kv_list=pre_kv) # hs: N x B x D logits = self.vocal_classifier(hs.transpose(0, 1)) log_probs = F.log_softmax(logits, dim=-1) if self.tokenizer.output_constraint: states, output_masks = self.tokenizer.update_states_and_masks(states, pred_token) output_masks = torch.tensor(output_masks, device=logits.device).unsqueeze(1) log_probs.masked_fill_(output_masks, -10000) if not self.pred_eos: log_probs[:, :, self.tokenizer.EOS_ID] = -10000 score, pred_token = log_probs.max(dim=-1) pred_seq.append(pred_token) pred_scores.append(score) if self.pred_eos: stop_state = pred_token.squeeze(1).eq(self.tokenizer.EOS_ID) end_lens += seq_i * (~end * stop_state) end = (stop_state + end).bool() if end.all() and seq_i > 4: break token = log_probs[:, :, :self.num_vocal - 2].argmax(dim=-1) input_embed = self.vocal_embed(token.transpose(0, 1)) if not self.pred_eos: end_lens = end_lens.fill_(max_len) pred_seq = torch.cat(pred_seq, dim=1) pred_seq = [seq[:end_idx] for end_idx, seq in zip(end_lens, pred_seq)] pred_scores = torch.cat(pred_scores, dim=1) pred_scores = [scores[:end_idx] for end_idx, scores in zip(end_lens, pred_scores)] return pred_seq, pred_scores class TransformerEncoder(nn.Module): def __init__(self, encoder_layer, num_layers, norm=None): super().__init__() self.layers = _get_clones(encoder_layer, num_layers) self.num_layers = num_layers self.norm = norm def forward(self, src, src_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None): output = src for layer in self.layers: output = layer(output, src_key_padding_mask=src_key_padding_mask, pos=pos) if self.norm is not None: output = self.norm(output) return output class TransformerDecoder(nn.Module): def __init__(self, decoder_layer, num_layers, norm=None): super().__init__() self.layers = _get_clones(decoder_layer, num_layers) self.num_layers = num_layers self.norm = norm def forward(self, tgt, memory, memory_key_padding_mask, pos, pre_kv_list=None, self_attn_mask=None): output = tgt cur_kv_list = [] for layer, pre_kv in zip(self.layers, pre_kv_list): output, cur_kv = layer( output, memory, memory_key_padding_mask=memory_key_padding_mask, pos=pos, self_attn_mask=self_attn_mask, pre_kv=pre_kv) cur_kv_list.append(cur_kv) if self.norm is not None: output = self.norm(output) return output, cur_kv_list class TransformerEncoderLayer(nn.Module): def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu", normalize_before=False): super().__init__() self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) # Implementation of Feedforward model self.linear1 = nn.Linear(d_model, dim_feedforward) self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_feedforward, d_model) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) self.activation = _get_activation_fn(activation) self.normalize_before = normalize_before def with_pos_embed(self, tensor, pos: Optional[Tensor]): return tensor if pos is None else tensor + pos def forward_post(self, src, src_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None): q = k = self.with_pos_embed(src, pos) src2 = self.self_attn(q, k, value=src, key_padding_mask=src_key_padding_mask)[0] src = src + self.dropout1(src2) src = self.norm1(src) src2 = self.linear2(self.dropout(self.activation(self.linear1(src)))) src = src + self.dropout2(src2) src = self.norm2(src) return src def forward_pre(self, src, src_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None): src2 = self.norm1(src) q = k = self.with_pos_embed(src2, pos) src2 = self.self_attn(q, k, value=src2, key_padding_mask=src_key_padding_mask)[0] src = src + self.dropout1(src2) src2 = self.norm2(src) src2 = self.linear2(self.dropout(self.activation(self.linear1(src2)))) src = src + self.dropout2(src2) return src def forward(self, src, src_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None): if self.normalize_before: return self.forward_pre(src, src_key_padding_mask, pos) return self.forward_post(src, src_key_padding_mask, pos) class TransformerDecoderLayer(nn.Module): def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu", normalize_before=False): super().__init__() self.self_attn = Attention(d_model, nhead, dropout=dropout) self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) # Implementation of Feedforward model self.linear1 = nn.Linear(d_model, dim_feedforward) self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_feedforward, d_model) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.norm3 = nn.LayerNorm(d_model) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) self.dropout3 = nn.Dropout(dropout) self.activation = _get_activation_fn(activation) self.normalize_before = normalize_before def with_pos_embed(self, tensor, pos: Optional[Tensor]): return tensor if pos is None else tensor + pos def forward_post( self, tgt, memory, memory_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, self_attn_mask: Optional[Tensor] = None, pre_kv=None, ): tgt2, pre_kv = self.self_attn(tgt, pre_kv=pre_kv, attn_mask=self_attn_mask) tgt = tgt + self.dropout1(tgt2) tgt = self.norm1(tgt) tgt2 = self.multihead_attn( query=tgt, key=self.with_pos_embed(memory, pos), value=memory, key_padding_mask=memory_key_padding_mask, )[0] tgt = tgt + self.dropout2(tgt2) tgt = self.norm2(tgt) tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt)))) tgt = tgt + self.dropout3(tgt2) tgt = self.norm3(tgt) return tgt, pre_kv def forward_pre( self, tgt, memory, memory_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, self_attn_mask: Optional[Tensor] = None, pre_kv=None, ): tgt2 = self.norm1(tgt) tgt2, pre_kv = self.self_attn(tgt2, pre_kv=pre_kv, attn_mask=self_attn_mask) tgt = tgt + self.dropout1(tgt2) tgt2 = self.norm2(tgt) tgt2 = self.multihead_attn( query=tgt2, key=self.with_pos_embed(memory, pos), value=memory, key_padding_mask=memory_key_padding_mask, )[0] tgt = tgt + self.dropout2(tgt2) tgt2 = self.norm3(tgt) tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2)))) tgt = tgt + self.dropout3(tgt2) return tgt, pre_kv def forward( self, tgt, memory, memory_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, self_attn_mask: Optional[Tensor] = None, pre_kv=None, ): if self.normalize_before: return self.forward_pre(tgt, memory, memory_key_padding_mask, pos, self_attn_mask, pre_kv) return self.forward_post(tgt, memory, memory_key_padding_mask, pos, self_attn_mask, pre_kv) class MLP(nn.Module): """ Very simple multi-layer perceptron (also called FFN)""" def __init__(self, input_dim, hidden_dim, output_dim, num_layers): super().__init__() self.num_layers = num_layers h = [hidden_dim] * (num_layers - 1) self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) def forward(self, x): for i, layer in enumerate(self.layers): x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) return x def _get_clones(module, N): return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) def build_transformer(args, tokenizer): num_vocal = len(tokenizer) return Transformer( d_model=args.hidden_dim, dropout=args.dropout, nhead=args.nheads, dim_feedforward=args.dim_feedforward, num_encoder_layers=args.enc_layers, num_decoder_layers=args.dec_layers, normalize_before=args.pre_norm, num_vocal=num_vocal, pred_eos=args.pred_eos, tokenizer=tokenizer ) def _get_activation_fn(activation): """Return an activation function given a string""" if activation == "relu": return F.relu if activation == "gelu": return F.gelu if activation == "glu": return F.glu raise RuntimeError(F"activation should be relu/gelu, not {activation}.")