import torch import torch.nn as nn class Attention(nn.Module): def __init__(self, dim, num_heads=8, dropout=0.): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3) self.attn_drop = nn.Dropout(dropout) self.proj = nn.Linear(dim, dim) def forward(self, x, pre_kv=None, attn_mask=None): N, B, C = x.shape qkv = self.qkv(x).reshape(N, B, 3, self.num_heads, C // self.num_heads).permute(2, 1, 3, 0, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) if not self.training: k = torch.cat([pre_kv[0], k], dim=2) v = torch.cat([pre_kv[1], v], dim=2) pre_kv = torch.stack([k, v], dim=0) attn = (q @ k.transpose(-2, -1)) * self.scale if attn_mask is not None: attn.masked_fill_(attn_mask, float('-inf')) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).permute(2, 0, 1, 3).reshape(N, B, C) x = self.proj(x) return x, pre_kv