RxnIM / rxn /reaction /loss.py
CYF200127's picture
Upload 116 files
5e9bd47 verified
raw
history blame
3.27 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
class LabelSmoothingLoss(nn.Module):
"""
With label smoothing,
KL-divergence between q_{smoothed ground truth prob.}(w)
and p_{prob. computed by model}(w) is minimized.
"""
def __init__(self, label_smoothing, tgt_vocab_size, ignore_index=-100):
assert 0.0 < label_smoothing <= 1.0
self.ignore_index = ignore_index
super(LabelSmoothingLoss, self).__init__()
smoothing_value = label_smoothing / (tgt_vocab_size - 2)
one_hot = torch.full((tgt_vocab_size,), smoothing_value)
one_hot[self.ignore_index] = 0
self.register_buffer('one_hot', one_hot.unsqueeze(0))
self.confidence = 1.0 - label_smoothing
def forward(self, output, target):
"""
output (FloatTensor): batch_size x n_classes
target (LongTensor): batch_size
"""
# assuming output is raw logits
# convert to log_probs
log_probs = F.log_softmax(output, dim=-1)
model_prob = self.one_hot.repeat(target.size(0), 1)
model_prob.scatter_(1, target.unsqueeze(1), self.confidence)
model_prob.masked_fill_((target == self.ignore_index).unsqueeze(1), 0)
# reduction mean or sum?
return F.kl_div(log_probs, model_prob, reduction='batchmean')
class SequenceLoss(nn.Module):
def __init__(self, label_smoothing, vocab_size, ignore_index=-100, ignore_indices=[]):
super(SequenceLoss, self).__init__()
if ignore_indices:
ignore_index = ignore_indices[0]
self.ignore_index = ignore_index
self.ignore_indices = ignore_indices
if label_smoothing == 0:
self.criterion = nn.CrossEntropyLoss(ignore_index=ignore_index, reduction='mean')
# Cross entropy = KL divergence + constant
else:
self.criterion = LabelSmoothingLoss(label_smoothing, vocab_size, ignore_index)
def forward(self, output, target):
"""
:param output: [batch, len, vocab]
:param target: [batch, len]
:return:
"""
batch_size, max_len, vocab_size = output.size()
output = output.reshape(-1, vocab_size)
target = target.reshape(-1)
for idx in self.ignore_indices:
if idx != self.ignore_index:
target.masked_fill_((target == idx), self.ignore_index)
loss = self.criterion(output, target)
return loss
class Criterion(nn.Module):
def __init__(self, args, tokenizer):
super(Criterion, self).__init__()
criterion = {}
format = args.format
tn = tokenizer[format]
criterion[format] = SequenceLoss(args.label_smoothing, len(tn), ignore_index=tn.PAD_ID)
self.criterion = nn.ModuleDict(criterion)
def forward(self, results, refs):
losses = {}
for format_ in results:
predictions, targets, *_ = results[format_]
loss_ = self.criterion[format_](predictions, targets)
if type(loss_) is dict:
losses.update(loss_)
else:
if loss_.numel() > 1:
loss_ = loss_.mean()
losses[format_] = loss_
return losses