RxnIM / rxn /reaction /interface.py
CYF200127's picture
Upload 116 files
5e9bd47 verified
raw
history blame
7.18 kB
import os
import argparse
from typing import List
import PIL
import torch
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.backends.backend_agg import FigureCanvasAgg
from .pix2seq import build_pix2seq_model
from .tokenizer import get_tokenizer
from .dataset import make_transforms
from .data import postprocess_reactions, ReactionImageData
from molscribe import MolScribe
from huggingface_hub import hf_hub_download
import easyocr
class Reaction:
def __init__(self, model_path, device=None):
"""
:param model_path: path of the model checkpoint.
:param device: torch device, defaults to be CPU.
"""
args = self._get_args()
args.format = 'reaction'
states = torch.load(model_path, map_location=torch.device('cpu'))
if device is None:
device = torch.device('cpu')
self.device = device
self.tokenizer = get_tokenizer(args)
self.model = self.get_model(args, self.tokenizer, self.device, states['state_dict'])
self.transform = make_transforms('test', augment=False, debug=False)
self.molscribe = self.get_molscribe()
self.ocr_model = self.get_ocr_model()
def _get_args(self):
parser = argparse.ArgumentParser()
# * Backbone
parser.add_argument('--backbone', default='resnet50', type=str,
help="Name of the convolutional backbone to use")
parser.add_argument('--dilation', action='store_true',
help="If true, we replace stride with dilation in the last convolutional block (DC5)")
parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine', 'learned'),
help="Type of positional embedding to use on top of the image features")
# * Transformer
parser.add_argument('--enc_layers', default=6, type=int, help="Number of encoding layers in the transformer")
parser.add_argument('--dec_layers', default=6, type=int, help="Number of decoding layers in the transformer")
parser.add_argument('--dim_feedforward', default=1024, type=int,
help="Intermediate size of the feedforward layers in the transformer blocks")
parser.add_argument('--hidden_dim', default=256, type=int,
help="Size of the embeddings (dimension of the transformer)")
parser.add_argument('--dropout', default=0.1, type=float, help="Dropout applied in the transformer")
parser.add_argument('--nheads', default=8, type=int,
help="Number of attention heads inside the transformer's attentions")
parser.add_argument('--pre_norm', action='store_true')
# Data
parser.add_argument('--format', type=str, default='reaction')
parser.add_argument('--input_size', type=int, default=1333)
args = parser.parse_args([])
args.pix2seq = True
args.pix2seq_ckpt = None
args.pred_eos = True
return args
def get_model(self, args, tokenizer, device, model_states):
def remove_prefix(state_dict):
return {k.replace('model.', ''): v for k, v in state_dict.items()}
model = build_pix2seq_model(args, tokenizer[args.format])
model.load_state_dict(remove_prefix(model_states), strict=False)
model.to(device)
model.eval()
return model
def get_molscribe(self):
ckpt_path = hf_hub_download("yujieq/MolScribe", "swin_base_char_aux_1m.pth")
molscribe = MolScribe(ckpt_path, device=self.device)
return molscribe
def get_ocr_model(self):
reader = easyocr.Reader(['en'], gpu=(self.device.type == 'cuda'))
return reader
def predict_images(self, input_images: List, batch_size=16, molscribe=False, ocr=False):
# images: a list of PIL images
device = self.device
tokenizer = self.tokenizer['reaction']
predictions = []
for idx in range(0, len(input_images), batch_size):
batch_images = input_images[idx:idx+batch_size]
images, refs = zip(*[self.transform(image) for image in batch_images])
images = torch.stack(images, dim=0).to(device)
with torch.no_grad():
pred_seqs, pred_scores = self.model(images, max_len=tokenizer.max_len)
for i, (seqs, scores) in enumerate(zip(pred_seqs, pred_scores)):
reactions = tokenizer.sequence_to_data(seqs.tolist(), scores.tolist(), scale=refs[i]['scale'])
reactions = postprocess_reactions(
reactions,
image=input_images[i],
molscribe=self.molscribe if molscribe else None,
ocr=self.ocr_model if ocr else None
)
predictions.append(reactions)
return predictions
def predict_image(self, image, **kwargs):
predictions = self.predict_images([image], **kwargs)
return predictions[0]
def predict_image_files(self, image_files: List, **kwargs):
input_images = []
for path in image_files:
image = PIL.Image.open(path).convert("RGB")
input_images.append(image)
return self.predict_images(input_images, **kwargs)
def predict_image_file(self, image_file: str, **kwargs):
predictions = self.predict_image_files([image_file], **kwargs)
return predictions[0]
def draw_predictions(self, predictions, image=None, image_file=None):
results = []
assert image or image_file
data = ReactionImageData(predictions=predictions, image=image, image_file=image_file)
h, w = np.array([data.height, data.width]) * 10 / max(data.height, data.width)
for r in data.pred_reactions:
fig, ax = plt.subplots(figsize=(w, h))
fig.tight_layout()
canvas = FigureCanvasAgg(fig)
ax.imshow(data.image)
ax.axis('off')
r.draw(ax)
canvas.draw()
buf = canvas.buffer_rgba()
results.append(np.asarray(buf))
plt.close(fig)
return results
def draw_predictions_combined(self, predictions, image=None, image_file=None):
assert image or image_file
data = ReactionImageData(predictions=predictions, image=image, image_file=image_file)
h, w = np.array([data.height, data.width]) * 10 / max(data.height, data.width)
n = len(data.pred_reactions)
fig, axes = plt.subplots(n, 1, figsize=(w, h * n))
if n == 1:
axes = [axes]
fig.tight_layout(rect=(0.02, 0.02, 0.99, 0.99))
canvas = FigureCanvasAgg(fig)
for i, r in enumerate(data.pred_reactions):
ax = axes[i]
ax.imshow(data.image)
ax.set_xticks([])
ax.set_yticks([])
ax.set_title(f'reaction # {i}', fontdict={'fontweight': 'bold', 'fontsize': 14})
r.draw(ax)
canvas.draw()
buf = canvas.buffer_rgba()
result_image = np.asarray(buf)
plt.close(fig)
return result_image