RxnIM / rxn /reaction /evaluate.py
CYF200127's picture
Upload 116 files
5e9bd47 verified
raw
history blame
5.9 kB
import os
import contextlib
import copy
import numpy as np
from pycocotools.cocoeval import COCOeval
from pycocotools.coco import COCO
from .data import ImageData, ReactionImageData
class CocoEvaluator(object):
def __init__(self, coco_gt):
coco_gt = copy.deepcopy(coco_gt)
self.coco_gt = coco_gt
def evaluate(self, predictions):
img_ids, results = self.prepare(predictions, 'bbox')
if len(results) == 0:
return np.zeros((12,))
coco_dt = self.coco_gt.loadRes(results)
cocoEval = COCOeval(self.coco_gt, coco_dt, 'bbox')
cocoEval.params.imgIds = img_ids
cocoEval.evaluate()
cocoEval.accumulate()
cocoEval.summarize()
self.cocoEval = cocoEval
return cocoEval.stats
def prepare(self, predictions, iou_type):
if iou_type == "bbox":
return self.prepare_for_coco_detection(predictions)
else:
raise ValueError("Unknown iou type {}".format(iou_type))
def prepare_for_coco_detection(self, predictions):
img_ids = []
coco_results = []
for idx, prediction in enumerate(predictions):
if len(prediction) == 0:
continue
image = self.coco_gt.dataset['images'][idx]
img_ids.append(image['id'])
width = image['width']
height = image['height']
coco_results.extend(
[
{
"image_id": image['id'],
"category_id": pred['category_id'],
"bbox": convert_to_xywh(pred['bbox'], width, height),
"score": pred['score'],
}
for pred in prediction
]
)
return img_ids, coco_results
def convert_to_xywh(box, width, height):
xmin, ymin, xmax, ymax = box
return [xmin * width, ymin * height, (xmax - xmin) * width, (ymax - ymin) * height]
EMPTY_STATS = {'gold_hits': 0, 'gold_total': 0, 'pred_hits': 0, 'pred_total': 0, 'image': 0}
class ReactionEvaluator(object):
def evaluate_image(self, gold_image, pred_image, **kwargs):
data = ReactionImageData(gold_image, pred_image)
return data.evaluate(**kwargs)
def compute_metrics(self, gold_hits, gold_total, pred_hits, pred_total):
precision = pred_hits / max(pred_total, 1)
recall = gold_hits / max(gold_total, 1)
f1 = precision * recall * 2 / max(precision + recall, 1e-6)
return {'precision': precision, 'recall': recall, 'f1': f1}
def evaluate(self, groundtruths, predictions, **kwargs):
gold_hits, gold_total, pred_hits, pred_total = 0, 0, 0, 0
for gold_image, pred_image in zip(groundtruths, predictions):
gh, ph = self.evaluate_image(gold_image, pred_image, **kwargs)
gold_hits += sum(gh)
gold_total += len(gh)
pred_hits += sum(ph)
pred_total += len(ph)
return self.compute_metrics(gold_hits, gold_total, pred_hits, pred_total)
def evaluate_by_size(self, groundtruths, predictions, **kwargs):
group_stats = {}
for gold_image, pred_image in zip(groundtruths, predictions):
gh, ph = self.evaluate_image(gold_image, pred_image, **kwargs)
gtotal = len(gh)
if gtotal not in group_stats:
group_stats[gtotal] = copy.deepcopy(EMPTY_STATS)
group_stats[gtotal]['gold_hits'] += sum(gh)
group_stats[gtotal]['gold_total'] += len(gh)
group_stats[gtotal]['pred_hits'] += sum(ph)
group_stats[gtotal]['pred_total'] += len(ph)
group_stats[gtotal]['image'] += 1
group_scores = {}
for gtotal, stats in group_stats.items():
group_scores[gtotal] = self.compute_metrics(
stats['gold_hits'], stats['gold_total'], stats['pred_hits'], stats['pred_total'])
return group_scores, group_stats
def evaluate_by_group(self, groundtruths, predictions, **kwargs):
group_stats = {}
for gold_image, pred_image in zip(groundtruths, predictions):
gh, ph = self.evaluate_image(gold_image, pred_image, **kwargs)
diagram_type = gold_image['diagram_type']
if diagram_type not in group_stats:
group_stats[diagram_type] = copy.deepcopy(EMPTY_STATS)
group_stats[diagram_type]['gold_hits'] += sum(gh)
group_stats[diagram_type]['gold_total'] += len(gh)
group_stats[diagram_type]['pred_hits'] += sum(ph)
group_stats[diagram_type]['pred_total'] += len(ph)
group_stats[diagram_type]['image'] += 1
group_scores = {}
for group, stats in group_stats.items():
group_scores[group] = self.compute_metrics(
stats['gold_hits'], stats['gold_total'], stats['pred_hits'], stats['pred_total'])
return group_scores, group_stats
def evaluate_summarize(self, groundtruths, predictions, **kwargs):
size_scores, size_stats = self.evaluate_by_size(groundtruths, predictions, **kwargs)
summarize = {
'overall': copy.deepcopy(EMPTY_STATS),
# 'single': copy.deepcopy(EMPTY_STATS),
# 'multiple': copy.deepcopy(EMPTY_STATS)
}
for size, stats in size_stats.items():
if type(size) is int:
# output = summarize['single'] if size <= 1 else summarize['multiple']
for key in stats:
# output[key] += stats[key]
summarize['overall'][key] += stats[key]
scores = {}
for key, val in summarize.items():
scores[key] = self.compute_metrics(val['gold_hits'], val['gold_total'], val['pred_hits'], val['pred_total'])
return scores, summarize, size_stats