|
import os |
|
import cv2 |
|
import numpy as np |
|
import matplotlib.colors as colors |
|
import matplotlib.patches as patches |
|
|
|
|
|
class BBox(object): |
|
|
|
def __init__(self, bbox, image_data=None, xyxy=False, normalized=False): |
|
""" |
|
:param bbox: {'catrgory_id', 'bbox'} |
|
:param input_image: ImageData object |
|
:param xyxy: |
|
:param normalized: |
|
""" |
|
self.data = bbox |
|
self.image_data = image_data |
|
if image_data is not None: |
|
self.width = image_data.width |
|
self.height = image_data.height |
|
self.category_id = bbox['category_id'] |
|
if xyxy: |
|
x1, y1, x2, y2 = bbox['bbox'] |
|
else: |
|
x1, y1, w, h = bbox['bbox'] |
|
x2, y2 = x1 + w, y1 + h |
|
if not normalized: |
|
x1, y1, x2, y2 = x1 / self.width, y1 / self.height, x2 / self.width, y2 / self.height |
|
self.x1, self.y1, self.x2, self.y2 = x1, y1, x2, y2 |
|
|
|
@property |
|
def is_mol(self): |
|
return self.category_id == 1 |
|
|
|
@property |
|
def is_empty(self): |
|
return abs(self.x2 - self.x1) <= 0.01 or abs(self.y2 - self.y1) <= 0.01 |
|
|
|
def unnormalize(self): |
|
return self.x1 * self.width, self.y1 * self.height, self.x2 * self.width, self.y2 * self.height |
|
|
|
def image(self): |
|
x1, y1, x2, y2 = self.unnormalize() |
|
x1, y1, x2, y2 = max(int(x1), 0), max(int(y1), 0), min(int(x2), self.width), min(int(y2), self.height) |
|
return self.image_data.image[y1:y2, x1:x2] |
|
|
|
COLOR = {1: 'purple', 2: 'orange', 3: 'cyan', 4: 'magenta'} |
|
CATEGORY = {1: 'Str', 2: 'Txt', 3: 'Txt', 4: 'Sup'} |
|
|
|
|
|
def draw(self, ax, color=None): |
|
x1, y1, x2, y2 = self.unnormalize() |
|
if color is None: |
|
color = self.COLOR[self.category_id] |
|
rect = patches.Rectangle( |
|
(x1, y1), x2-x1, y2-y1, linewidth=1, edgecolor=color, facecolor=colors.to_rgba(color, 0.2)) |
|
text = f'{self.CATEGORY[self.category_id]}' |
|
ax.text(x2, y2, text, fontsize=20, bbox=dict(linewidth=0.5, facecolor='Lightgreen', alpha=0.5)) |
|
ax.add_patch(rect) |
|
return |
|
|
|
def set_smiles(self, smiles, coords, symbols, edges, molfile=None): |
|
rounded_coords = [[round(coord[0], 3), round(coord[1], 3)] for coord in coords] |
|
self.data['smiles'] = smiles |
|
self.data['coords'] = rounded_coords |
|
self.data['symbols'] = symbols |
|
self.data['edges'] = edges |
|
if molfile: |
|
self.data['molfile'] = molfile |
|
|
|
def set_text(self, text): |
|
self.data['text'] = text |
|
|
|
def to_json(self): |
|
return self.data |
|
|
|
|
|
class Reaction(object): |
|
|
|
def __init__(self, reaction=None, bboxes=None, image_data=None): |
|
''' |
|
if image_data is None, create from prediction |
|
if image_data is not None, create from groundtruth |
|
''' |
|
self.reactants = [] |
|
self.conditions = [] |
|
self.products = [] |
|
self.bboxes = [] |
|
if reaction is not None: |
|
for x in reaction['reactants']: |
|
bbox = bboxes[x] if type(x) is int else BBox(x, image_data, xyxy=True, normalized=True) |
|
self.bboxes.append(bbox) |
|
self.reactants.append(len(self.bboxes) - 1) |
|
for x in reaction['conditions']: |
|
bbox = bboxes[x] if type(x) is int else BBox(x, image_data, xyxy=True, normalized=True) |
|
self.bboxes.append(bbox) |
|
self.conditions.append(len(self.bboxes) - 1) |
|
for x in reaction['products']: |
|
bbox = bboxes[x] if type(x) is int else BBox(x, image_data, xyxy=True, normalized=True) |
|
self.bboxes.append(bbox) |
|
self.products.append(len(self.bboxes) - 1) |
|
|
|
def to_json(self): |
|
return { |
|
'reactants': [self.bboxes[i].to_json() for i in self.reactants], |
|
'conditions': [self.bboxes[i].to_json() for i in self.conditions], |
|
'products': [self.bboxes[i].to_json() for i in self.products] |
|
} |
|
|
|
def _deduplicate_bboxes(self, indices): |
|
results = [] |
|
for i, idx_i in enumerate(indices): |
|
duplicate = False |
|
for j, idx_j in enumerate(indices[:i]): |
|
if get_iou(self.bboxes[idx_i], self.bboxes[idx_j]) > 0.6: |
|
duplicate = True |
|
break |
|
if not duplicate: |
|
results.append(idx_i) |
|
return results |
|
|
|
def deduplicate(self): |
|
flags = [False] * len(self.bboxes) |
|
bbox_list = self.reactants + self.products + self.conditions |
|
for i, idx_i in enumerate(bbox_list): |
|
if self.bboxes[idx_i].is_empty: |
|
flags[idx_i] = True |
|
continue |
|
for idx_j in bbox_list[:i]: |
|
if flags[idx_j] is False and get_iou(self.bboxes[idx_i], self.bboxes[idx_j]) > 0.6: |
|
flags[idx_i] = True |
|
break |
|
self.reactants = [i for i in self.reactants if not flags[i]] |
|
self.conditions = [i for i in self.conditions if not flags[i]] |
|
self.products = [i for i in self.products if not flags[i]] |
|
|
|
def schema(self, mol_only=False): |
|
|
|
if mol_only: |
|
reactants, conditions, products = [[idx for idx in indices if self.bboxes[idx].is_mol] |
|
for indices in [self.reactants, self.conditions, self.products]] |
|
|
|
|
|
if len(reactants) == 0: |
|
reactants = self.reactants |
|
if len(products) == 0: |
|
products = self.products |
|
return reactants, conditions, products |
|
else: |
|
return self.reactants, self.conditions, self.products |
|
|
|
def compare(self, other, mol_only=False, merge_condition=False, debug=False): |
|
reactants1, conditions1, products1 = self.schema(mol_only) |
|
reactants2, conditions2, products2 = other.schema(mol_only) |
|
if debug: |
|
print(reactants1, conditions1, products1, ';', reactants2, conditions2, products2) |
|
if len(reactants1) + len(conditions1) + len(products1) == 0: |
|
|
|
return False |
|
if len(reactants1) + len(conditions1) + len(products1) != len(reactants2) + len(conditions2) + len(products2): |
|
return False |
|
|
|
match1, match2, scores = get_bboxes_match(self.bboxes, other.bboxes, iou_thres=0.5) |
|
m_reactants, m_conditions, m_products = [[match1[i] for i in x] for x in [reactants1, conditions1, products1]] |
|
if any([m == -1 for m in m_reactants + m_conditions + m_products]): |
|
return False |
|
if debug: |
|
print(m_reactants, m_conditions, m_products, ';', reactants2, conditions2, products2) |
|
if merge_condition: |
|
return sorted(m_reactants + m_conditions) == sorted(reactants2 + conditions2) \ |
|
and sorted(m_products) == sorted(products2) |
|
else: |
|
return sorted(m_reactants) == sorted(reactants2) and sorted(m_conditions) == sorted(conditions2) \ |
|
and sorted(m_products) == sorted(products2) |
|
|
|
def __eq__(self, other): |
|
|
|
return self.compare(other) |
|
|
|
def draw(self, ax): |
|
for i in self.reactants: |
|
self.bboxes[i].draw(ax, color='cyan') |
|
for i in self.conditions: |
|
self.bboxes[i].draw(ax, color='red') |
|
for i in self.products: |
|
self.bboxes[i].draw(ax, color='orange') |
|
return |
|
|
|
|
|
class ReactionSet(object): |
|
|
|
def __init__(self, reactions, bboxes=None, image_data=None): |
|
self.reactions = [Reaction(reaction, bboxes, image_data) for reaction in reactions] |
|
|
|
def __len__(self): |
|
return len(self.reactions) |
|
|
|
def __iter__(self): |
|
return iter(self.reactions) |
|
|
|
def __getitem__(self, item): |
|
return self.reactions[item] |
|
|
|
def deduplicate(self): |
|
results = [] |
|
for reaction in self.reactions: |
|
if any(r == reaction for r in results): |
|
continue |
|
if len(reaction.reactants) < 1 or len(reaction.products) < 1: |
|
continue |
|
results.append(reaction) |
|
self.reactions = results |
|
|
|
def to_json(self): |
|
return [r.to_json() for r in self.reactions] |
|
|
|
|
|
class ImageData(object): |
|
|
|
def __init__(self, data=None, predictions=None, image_file=None, image=None): |
|
self.width, self.height = None, None |
|
if data: |
|
self.file_name = data['file_name'] |
|
self.width = data['width'] |
|
self.height = data['height'] |
|
if image_file: |
|
self.image = cv2.imread(image_file) |
|
self.height, self.width, _ = self.image.shape |
|
if image is not None: |
|
if not isinstance(image, np.ndarray): |
|
image = np.asarray(image) |
|
self.image = image |
|
self.height, self.width, _ = self.image.shape |
|
if data and 'bboxes' in data: |
|
self.gold_bboxes = [BBox(bbox, self, xyxy=False, normalized=False) for bbox in data['bboxes']] |
|
if predictions is not None: |
|
self.pred_bboxes = [BBox(bbox, self, xyxy=True, normalized=True) for bbox in predictions] |
|
|
|
def draw_gold(self, ax, image=None): |
|
if image is not None: |
|
ax.imshow(image) |
|
for b in self.gold_bboxes: |
|
b.draw(ax) |
|
|
|
def draw_prediction(self, ax, image=None): |
|
if image is not None: |
|
ax.imshow(image) |
|
for b in self.pred_bboxes: |
|
b.draw(ax) |
|
|
|
|
|
class ReactionImageData(ImageData): |
|
|
|
def __init__(self, data=None, predictions=None, image_file=None, image=None): |
|
super().__init__(data=data, image_file=image_file, image=image) |
|
if data and 'reactions' in data: |
|
self.gold_reactions = ReactionSet(data['reactions'], self.gold_bboxes, image_data=self) |
|
if predictions is not None: |
|
self.pred_reactions = ReactionSet(predictions, image_data=self) |
|
self.pred_reactions.deduplicate() |
|
|
|
def evaluate(self, mol_only=False, merge_condition=False, debug=False): |
|
gold_total = len(self.gold_reactions) |
|
gold_hit = [False] * gold_total |
|
pred_total = len(self.pred_reactions) |
|
pred_hit = [False] * pred_total |
|
for i, ri in enumerate(self.gold_reactions): |
|
for j, rj in enumerate(self.pred_reactions): |
|
if gold_hit[i] and pred_hit[j]: |
|
continue |
|
if ri.compare(rj, mol_only, merge_condition, debug): |
|
gold_hit[i] = True |
|
pred_hit[j] = True |
|
return gold_hit, pred_hit |
|
|
|
|
|
def get_iou(bb1, bb2): |
|
"""Calculate the Intersection over Union (IoU) of two bounding boxes.""" |
|
bb1 = {'x1': bb1.x1, 'y1': bb1.y1, 'x2': bb1.x2, 'y2': bb1.y2} |
|
bb2 = {'x1': bb2.x1, 'y1': bb2.y1, 'x2': bb2.x2, 'y2': bb2.y2} |
|
|
|
assert bb1['x1'] < bb1['x2'] |
|
assert bb1['y1'] < bb1['y2'] |
|
assert bb2['x1'] < bb2['x2'] |
|
assert bb2['y1'] < bb2['y2'] |
|
|
|
|
|
x_left = max(bb1['x1'], bb2['x1']) |
|
y_top = max(bb1['y1'], bb2['y1']) |
|
x_right = min(bb1['x2'], bb2['x2']) |
|
y_bottom = min(bb1['y2'], bb2['y2']) |
|
|
|
if x_right < x_left or y_bottom < y_top: |
|
return 0.0 |
|
|
|
|
|
|
|
intersection_area = (x_right - x_left) * (y_bottom - y_top) |
|
|
|
|
|
bb1_area = (bb1['x2'] - bb1['x1']) * (bb1['y2'] - bb1['y1']) |
|
bb2_area = (bb2['x2'] - bb2['x1']) * (bb2['y2'] - bb2['y1']) |
|
|
|
|
|
|
|
|
|
iou = intersection_area / float(bb1_area + bb2_area - intersection_area) |
|
assert iou >= 0.0 |
|
assert iou <= 1.0 |
|
return iou |
|
|
|
|
|
def get_bboxes_match(bboxes1, bboxes2, iou_thres=0.5, match_category=False): |
|
"""Find the match between two sets of bboxes. Each bbox is matched with a bbox with maximum overlap |
|
(at least above iou_thres). -1 if a bbox does not have a match.""" |
|
scores = np.zeros((len(bboxes1), len(bboxes2))) |
|
for i, bbox1 in enumerate(bboxes1): |
|
for j, bbox2 in enumerate(bboxes2): |
|
if match_category and bbox1.category_id != bbox2.category_id: |
|
scores[i, j] = 0 |
|
else: |
|
scores[i, j] = get_iou(bbox1, bbox2) |
|
match1 = scores.argmax(axis=1) |
|
for i in range(len(match1)): |
|
if scores[i, match1[i]] < iou_thres: |
|
match1[i] = -1 |
|
match2 = scores.argmax(axis=0) |
|
for j in range(len(match2)): |
|
if scores[match2[j], j] < iou_thres: |
|
match2[j] = -1 |
|
return match1, match2, scores |
|
|
|
|
|
def deduplicate_reactions(reactions): |
|
pred_reactions = ReactionSet(reactions) |
|
for r in pred_reactions: |
|
r.deduplicate() |
|
pred_reactions.deduplicate() |
|
return pred_reactions.to_json() |
|
|
|
|
|
def postprocess_reactions(reactions, image_file=None, image=None, molscribe=None, ocr=None, batch_size=32): |
|
image_data = ReactionImageData(predictions=reactions, image_file=image_file, image=image) |
|
pred_reactions = image_data.pred_reactions |
|
for r in pred_reactions: |
|
r.deduplicate() |
|
pred_reactions.deduplicate() |
|
if molscribe: |
|
bbox_images, bbox_indices = [], [] |
|
for i, reaction in enumerate(pred_reactions): |
|
for j, bbox in enumerate(reaction.bboxes): |
|
if bbox.is_mol: |
|
bbox_images.append(bbox.image()) |
|
bbox_indices.append((i, j)) |
|
if len(bbox_images) > 0: |
|
predictions = molscribe.predict_images(bbox_images, batch_size=batch_size) |
|
for (i, j), pred in zip(bbox_indices, predictions): |
|
|
|
pred_reactions[i].bboxes[j].set_smiles(pred['smiles'],pred['oringinal_coords'],pred['original_symbols'],pred['orignal_edges']) |
|
if ocr: |
|
for reaction in pred_reactions: |
|
for bbox in reaction.bboxes: |
|
if not bbox.is_mol: |
|
text = ocr.readtext(bbox.image(), detail=0) |
|
bbox.set_text(text) |
|
return pred_reactions.to_json() |
|
|