File size: 10,688 Bytes
5e9bd47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import numpy as np

import torch
import torch.nn as nn
import torch.nn.functional as F

import timm

from .inference import GreedySearch, BeamSearch
from .transformer import TransformerDecoder, Embeddings


class Encoder(nn.Module):
    def __init__(self, args, pretrained=False):
        super().__init__()
        model_name = args.encoder
        self.model_name = model_name
        if model_name.startswith('resnet'):
            self.model_type = 'resnet'
            self.cnn = timm.create_model(model_name, pretrained=pretrained)
            self.n_features = self.cnn.num_features  # encoder_dim
            self.cnn.global_pool = nn.Identity()
            self.cnn.fc = nn.Identity()
        elif model_name.startswith('swin'):
            self.model_type = 'swin'
            self.transformer = timm.create_model(model_name, pretrained=pretrained, pretrained_strict=False,
                                                 use_checkpoint=args.use_checkpoint)
            self.n_features = self.transformer.num_features
            self.transformer.head = nn.Identity()
        elif 'efficientnet' in model_name:
            self.model_type = 'efficientnet'
            self.cnn = timm.create_model(model_name, pretrained=pretrained)
            self.n_features = self.cnn.num_features
            self.cnn.global_pool = nn.Identity()
            self.cnn.classifier = nn.Identity()
        else:
            raise NotImplemented

    def swin_forward(self, transformer, x):
        x = transformer.patch_embed(x)
        if transformer.absolute_pos_embed is not None:
            x = x + transformer.absolute_pos_embed
        x = transformer.pos_drop(x)

        def layer_forward(layer, x, hiddens):
            for blk in layer.blocks:
                if not torch.jit.is_scripting() and layer.use_checkpoint:
                    x = torch.utils.checkpoint.checkpoint(blk, x)
                else:
                    x = blk(x)
            H, W = layer.input_resolution
            B, L, C = x.shape
            hiddens.append(x.view(B, H, W, C))
            if layer.downsample is not None:
                x = layer.downsample(x)
            return x, hiddens

        hiddens = []
        for layer in transformer.layers:
            x, hiddens = layer_forward(layer, x, hiddens)
        x = transformer.norm(x)  # B L C
        hiddens[-1] = x.view_as(hiddens[-1])
        return x, hiddens

    def forward(self, x, refs=None):
        if self.model_type in ['resnet', 'efficientnet']:
            features = self.cnn(x)
            features = features.permute(0, 2, 3, 1)
            hiddens = []
        elif self.model_type == 'swin':
            if 'patch' in self.model_name:
                features, hiddens = self.swin_forward(self.transformer, x)
            else:
                features, hiddens = self.transformer(x)
        else:
            raise NotImplemented
        return features, hiddens


class TransformerDecoderBase(nn.Module):

    def __init__(self, args):
        super().__init__()
        self.args = args

        self.enc_trans_layer = nn.Sequential(
            nn.Linear(args.encoder_dim, args.dec_hidden_size)
            # nn.LayerNorm(args.dec_hidden_size, eps=1e-6)
        )
        self.enc_pos_emb = nn.Embedding(144, args.encoder_dim) if args.enc_pos_emb else None

        self.decoder = TransformerDecoder(
            num_layers=args.dec_num_layers,
            d_model=args.dec_hidden_size,
            heads=args.dec_attn_heads,
            d_ff=args.dec_hidden_size * 4,
            copy_attn=False,
            self_attn_type="scaled-dot",
            dropout=args.hidden_dropout,
            attention_dropout=args.attn_dropout,
            max_relative_positions=args.max_relative_positions,
            aan_useffn=False,
            full_context_alignment=False,
            alignment_layer=0,
            alignment_heads=0,
            pos_ffn_activation_fn='gelu'
        )

    def enc_transform(self, encoder_out):
        batch_size = encoder_out.size(0)
        encoder_dim = encoder_out.size(-1)
        encoder_out = encoder_out.view(batch_size, -1, encoder_dim)  # (batch_size, num_pixels, encoder_dim)
        max_len = encoder_out.size(1)
        device = encoder_out.device
        if self.enc_pos_emb:
            pos_emb = self.enc_pos_emb(torch.arange(max_len, device=device)).unsqueeze(0)
            encoder_out = encoder_out + pos_emb
        encoder_out = self.enc_trans_layer(encoder_out)
        return encoder_out


class TransformerDecoderAR(TransformerDecoderBase):

    def __init__(self, args, tokenizer):
        super().__init__(args)
        self.tokenizer = tokenizer
        self.vocab_size = len(self.tokenizer)
        self.output_layer = nn.Linear(args.dec_hidden_size, self.vocab_size, bias=True)
        self.embeddings = Embeddings(
            word_vec_size=args.dec_hidden_size,
            word_vocab_size=self.vocab_size,
            word_padding_idx=tokenizer.PAD_ID,
            position_encoding=True,
            dropout=args.hidden_dropout)

    def dec_embedding(self, tgt, step=None):
        pad_idx = self.embeddings.word_padding_idx
        tgt_pad_mask = tgt.data.eq(pad_idx).transpose(1, 2)  # [B, 1, T_tgt]
        emb = self.embeddings(tgt, step=step)
        assert emb.dim() == 3  # batch x len x embedding_dim
        return emb, tgt_pad_mask

    def forward(self, encoder_out, labels, label_lengths):
        batch_size, max_len, _ = encoder_out.size()
        memory_bank = self.enc_transform(encoder_out)

        tgt = labels.unsqueeze(-1)  # (b, t, 1)
        tgt_emb, tgt_pad_mask = self.dec_embedding(tgt)
        dec_out, *_ = self.decoder(tgt_emb=tgt_emb, memory_bank=memory_bank, tgt_pad_mask=tgt_pad_mask)

        logits = self.output_layer(dec_out)    # (b, t, h) -> (b, t, v)
        return logits[:, :-1], labels[:, 1:], dec_out

    def decode(self, encoder_out, beam_size: int, n_best: int, min_length: int = 1, max_length: int = 256):
        batch_size, max_len, _ = encoder_out.size()
        memory_bank = self.enc_transform(encoder_out)

        if beam_size == 1:
            decode_strategy = GreedySearch(
                sampling_temp=0.0, keep_topk=1, batch_size=batch_size, min_length=min_length, max_length=max_length,
                pad=self.tokenizer.PAD_ID, bos=self.tokenizer.SOS_ID, eos=self.tokenizer.EOS_ID,
                return_attention=False, return_hidden=True)
        else:
            decode_strategy = BeamSearch(
                beam_size=beam_size, n_best=n_best, batch_size=batch_size, min_length=min_length, max_length=max_length,
                pad=self.tokenizer.PAD_ID, bos=self.tokenizer.SOS_ID, eos=self.tokenizer.EOS_ID,
                return_attention=False)

        # adapted from onmt.translate.translator
        results = {
            "predictions": None,
            "scores": None,
            "attention": None
        }

        # (2) prep decode_strategy. Possibly repeat src objects.
        _, memory_bank = decode_strategy.initialize(memory_bank=memory_bank)

        # (3) Begin decoding step by step:
        for step in range(decode_strategy.max_length):
            tgt = decode_strategy.current_predictions.view(-1, 1, 1)
            tgt_emb, tgt_pad_mask = self.dec_embedding(tgt)
            dec_out, dec_attn, *_ = self.decoder(tgt_emb=tgt_emb, memory_bank=memory_bank,
                                                 tgt_pad_mask=tgt_pad_mask, step=step)

            attn = dec_attn.get("std", None)

            dec_logits = self.output_layer(dec_out)            # [b, t, h] => [b, t, v]
            dec_logits = dec_logits.squeeze(1)
            log_probs = F.log_softmax(dec_logits, dim=-1)

            if self.tokenizer.output_constraint:
                output_mask = [self.tokenizer.get_output_mask(id) for id in tgt.view(-1).tolist()]
                output_mask = torch.tensor(output_mask, device=log_probs.device)
                log_probs.masked_fill_(output_mask, -10000)

            decode_strategy.advance(log_probs, attn, dec_out)
            any_finished = decode_strategy.is_finished.any()
            if any_finished:
                decode_strategy.update_finished()
                if decode_strategy.done:
                    break

            select_indices = decode_strategy.select_indices
            if any_finished:
                # Reorder states.
                memory_bank = memory_bank.index_select(0, select_indices)
                self.map_state(lambda state, dim: state.index_select(dim, select_indices))

        results["scores"] = decode_strategy.scores
        results["predictions"] = decode_strategy.predictions
        results["attention"] = decode_strategy.attention
        results["hidden"] = decode_strategy.hidden

        return results["predictions"], results['scores'], results["hidden"]

    # adapted from onmt.decoders.transformer
    def map_state(self, fn):
        def _recursive_map(struct, batch_dim=0):
            for k, v in struct.items():
                if v is not None:
                    if isinstance(v, dict):
                        _recursive_map(v)
                    else:
                        struct[k] = fn(v, batch_dim)
        if self.decoder.state["cache"] is not None:
            _recursive_map(self.decoder.state["cache"])


class Decoder(nn.Module):

    def __init__(self, args, tokenizer):
        super(Decoder, self).__init__()
        self.args = args
        self.formats = args.formats
        self.tokenizer = tokenizer
        decoder = {}
        for format_ in args.formats:
            decoder[format_] = TransformerDecoderAR(args, tokenizer[format_])
        self.decoder = nn.ModuleDict(decoder)

    def forward(self, encoder_out, hiddens, refs):
        results = {}
        for format_ in self.formats:
            labels, label_lengths = refs[format_]
            results[format_] = self.decoder[format_](encoder_out, labels, label_lengths)
        return results

    def decode(self, encoder_out, hiddens, refs=None, beam_size=1, n_best=1):
        results = {}
        predictions = {}
        beam_predictions = {}
        for format_ in self.formats:
            max_len = self.tokenizer[format_].max_len
            results[format_] = self.decoder[format_].decode(encoder_out, beam_size, n_best, max_length=max_len)
            outputs, scores, *_ = results[format_]
            beam_preds = [[self.tokenizer[format_].sequence_to_data(x.tolist()) for x in pred] for pred in outputs]
            beam_predictions[format_] = (beam_preds, scores)
            predictions[format_] = [preds[0] for preds in beam_preds]
        return predictions, beam_predictions