File size: 10,688 Bytes
5e9bd47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import timm
from .inference import GreedySearch, BeamSearch
from .transformer import TransformerDecoder, Embeddings
class Encoder(nn.Module):
def __init__(self, args, pretrained=False):
super().__init__()
model_name = args.encoder
self.model_name = model_name
if model_name.startswith('resnet'):
self.model_type = 'resnet'
self.cnn = timm.create_model(model_name, pretrained=pretrained)
self.n_features = self.cnn.num_features # encoder_dim
self.cnn.global_pool = nn.Identity()
self.cnn.fc = nn.Identity()
elif model_name.startswith('swin'):
self.model_type = 'swin'
self.transformer = timm.create_model(model_name, pretrained=pretrained, pretrained_strict=False,
use_checkpoint=args.use_checkpoint)
self.n_features = self.transformer.num_features
self.transformer.head = nn.Identity()
elif 'efficientnet' in model_name:
self.model_type = 'efficientnet'
self.cnn = timm.create_model(model_name, pretrained=pretrained)
self.n_features = self.cnn.num_features
self.cnn.global_pool = nn.Identity()
self.cnn.classifier = nn.Identity()
else:
raise NotImplemented
def swin_forward(self, transformer, x):
x = transformer.patch_embed(x)
if transformer.absolute_pos_embed is not None:
x = x + transformer.absolute_pos_embed
x = transformer.pos_drop(x)
def layer_forward(layer, x, hiddens):
for blk in layer.blocks:
if not torch.jit.is_scripting() and layer.use_checkpoint:
x = torch.utils.checkpoint.checkpoint(blk, x)
else:
x = blk(x)
H, W = layer.input_resolution
B, L, C = x.shape
hiddens.append(x.view(B, H, W, C))
if layer.downsample is not None:
x = layer.downsample(x)
return x, hiddens
hiddens = []
for layer in transformer.layers:
x, hiddens = layer_forward(layer, x, hiddens)
x = transformer.norm(x) # B L C
hiddens[-1] = x.view_as(hiddens[-1])
return x, hiddens
def forward(self, x, refs=None):
if self.model_type in ['resnet', 'efficientnet']:
features = self.cnn(x)
features = features.permute(0, 2, 3, 1)
hiddens = []
elif self.model_type == 'swin':
if 'patch' in self.model_name:
features, hiddens = self.swin_forward(self.transformer, x)
else:
features, hiddens = self.transformer(x)
else:
raise NotImplemented
return features, hiddens
class TransformerDecoderBase(nn.Module):
def __init__(self, args):
super().__init__()
self.args = args
self.enc_trans_layer = nn.Sequential(
nn.Linear(args.encoder_dim, args.dec_hidden_size)
# nn.LayerNorm(args.dec_hidden_size, eps=1e-6)
)
self.enc_pos_emb = nn.Embedding(144, args.encoder_dim) if args.enc_pos_emb else None
self.decoder = TransformerDecoder(
num_layers=args.dec_num_layers,
d_model=args.dec_hidden_size,
heads=args.dec_attn_heads,
d_ff=args.dec_hidden_size * 4,
copy_attn=False,
self_attn_type="scaled-dot",
dropout=args.hidden_dropout,
attention_dropout=args.attn_dropout,
max_relative_positions=args.max_relative_positions,
aan_useffn=False,
full_context_alignment=False,
alignment_layer=0,
alignment_heads=0,
pos_ffn_activation_fn='gelu'
)
def enc_transform(self, encoder_out):
batch_size = encoder_out.size(0)
encoder_dim = encoder_out.size(-1)
encoder_out = encoder_out.view(batch_size, -1, encoder_dim) # (batch_size, num_pixels, encoder_dim)
max_len = encoder_out.size(1)
device = encoder_out.device
if self.enc_pos_emb:
pos_emb = self.enc_pos_emb(torch.arange(max_len, device=device)).unsqueeze(0)
encoder_out = encoder_out + pos_emb
encoder_out = self.enc_trans_layer(encoder_out)
return encoder_out
class TransformerDecoderAR(TransformerDecoderBase):
def __init__(self, args, tokenizer):
super().__init__(args)
self.tokenizer = tokenizer
self.vocab_size = len(self.tokenizer)
self.output_layer = nn.Linear(args.dec_hidden_size, self.vocab_size, bias=True)
self.embeddings = Embeddings(
word_vec_size=args.dec_hidden_size,
word_vocab_size=self.vocab_size,
word_padding_idx=tokenizer.PAD_ID,
position_encoding=True,
dropout=args.hidden_dropout)
def dec_embedding(self, tgt, step=None):
pad_idx = self.embeddings.word_padding_idx
tgt_pad_mask = tgt.data.eq(pad_idx).transpose(1, 2) # [B, 1, T_tgt]
emb = self.embeddings(tgt, step=step)
assert emb.dim() == 3 # batch x len x embedding_dim
return emb, tgt_pad_mask
def forward(self, encoder_out, labels, label_lengths):
batch_size, max_len, _ = encoder_out.size()
memory_bank = self.enc_transform(encoder_out)
tgt = labels.unsqueeze(-1) # (b, t, 1)
tgt_emb, tgt_pad_mask = self.dec_embedding(tgt)
dec_out, *_ = self.decoder(tgt_emb=tgt_emb, memory_bank=memory_bank, tgt_pad_mask=tgt_pad_mask)
logits = self.output_layer(dec_out) # (b, t, h) -> (b, t, v)
return logits[:, :-1], labels[:, 1:], dec_out
def decode(self, encoder_out, beam_size: int, n_best: int, min_length: int = 1, max_length: int = 256):
batch_size, max_len, _ = encoder_out.size()
memory_bank = self.enc_transform(encoder_out)
if beam_size == 1:
decode_strategy = GreedySearch(
sampling_temp=0.0, keep_topk=1, batch_size=batch_size, min_length=min_length, max_length=max_length,
pad=self.tokenizer.PAD_ID, bos=self.tokenizer.SOS_ID, eos=self.tokenizer.EOS_ID,
return_attention=False, return_hidden=True)
else:
decode_strategy = BeamSearch(
beam_size=beam_size, n_best=n_best, batch_size=batch_size, min_length=min_length, max_length=max_length,
pad=self.tokenizer.PAD_ID, bos=self.tokenizer.SOS_ID, eos=self.tokenizer.EOS_ID,
return_attention=False)
# adapted from onmt.translate.translator
results = {
"predictions": None,
"scores": None,
"attention": None
}
# (2) prep decode_strategy. Possibly repeat src objects.
_, memory_bank = decode_strategy.initialize(memory_bank=memory_bank)
# (3) Begin decoding step by step:
for step in range(decode_strategy.max_length):
tgt = decode_strategy.current_predictions.view(-1, 1, 1)
tgt_emb, tgt_pad_mask = self.dec_embedding(tgt)
dec_out, dec_attn, *_ = self.decoder(tgt_emb=tgt_emb, memory_bank=memory_bank,
tgt_pad_mask=tgt_pad_mask, step=step)
attn = dec_attn.get("std", None)
dec_logits = self.output_layer(dec_out) # [b, t, h] => [b, t, v]
dec_logits = dec_logits.squeeze(1)
log_probs = F.log_softmax(dec_logits, dim=-1)
if self.tokenizer.output_constraint:
output_mask = [self.tokenizer.get_output_mask(id) for id in tgt.view(-1).tolist()]
output_mask = torch.tensor(output_mask, device=log_probs.device)
log_probs.masked_fill_(output_mask, -10000)
decode_strategy.advance(log_probs, attn, dec_out)
any_finished = decode_strategy.is_finished.any()
if any_finished:
decode_strategy.update_finished()
if decode_strategy.done:
break
select_indices = decode_strategy.select_indices
if any_finished:
# Reorder states.
memory_bank = memory_bank.index_select(0, select_indices)
self.map_state(lambda state, dim: state.index_select(dim, select_indices))
results["scores"] = decode_strategy.scores
results["predictions"] = decode_strategy.predictions
results["attention"] = decode_strategy.attention
results["hidden"] = decode_strategy.hidden
return results["predictions"], results['scores'], results["hidden"]
# adapted from onmt.decoders.transformer
def map_state(self, fn):
def _recursive_map(struct, batch_dim=0):
for k, v in struct.items():
if v is not None:
if isinstance(v, dict):
_recursive_map(v)
else:
struct[k] = fn(v, batch_dim)
if self.decoder.state["cache"] is not None:
_recursive_map(self.decoder.state["cache"])
class Decoder(nn.Module):
def __init__(self, args, tokenizer):
super(Decoder, self).__init__()
self.args = args
self.formats = args.formats
self.tokenizer = tokenizer
decoder = {}
for format_ in args.formats:
decoder[format_] = TransformerDecoderAR(args, tokenizer[format_])
self.decoder = nn.ModuleDict(decoder)
def forward(self, encoder_out, hiddens, refs):
results = {}
for format_ in self.formats:
labels, label_lengths = refs[format_]
results[format_] = self.decoder[format_](encoder_out, labels, label_lengths)
return results
def decode(self, encoder_out, hiddens, refs=None, beam_size=1, n_best=1):
results = {}
predictions = {}
beam_predictions = {}
for format_ in self.formats:
max_len = self.tokenizer[format_].max_len
results[format_] = self.decoder[format_].decode(encoder_out, beam_size, n_best, max_length=max_len)
outputs, scores, *_ = results[format_]
beam_preds = [[self.tokenizer[format_].sequence_to_data(x.tolist()) for x in pred] for pred in outputs]
beam_predictions[format_] = (beam_preds, scores)
predictions[format_] = [preds[0] for preds in beam_preds]
return predictions, beam_predictions
|