File size: 17,792 Bytes
5e9bd47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import timm
from .utils import FORMAT_INFO, to_device
from .tokenizer import SOS_ID, EOS_ID, PAD_ID, MASK_ID
from .inference import GreedySearch, BeamSearch
from .transformer import TransformerDecoder, Embeddings
class Encoder(nn.Module):
def __init__(self, args, pretrained=False):
super().__init__()
model_name = args.encoder
self.model_name = model_name
if model_name.startswith('resnet'):
self.model_type = 'resnet'
self.cnn = timm.create_model(model_name, pretrained=pretrained)
self.n_features = self.cnn.num_features # encoder_dim
self.cnn.global_pool = nn.Identity()
self.cnn.fc = nn.Identity()
elif model_name.startswith('swin'):
self.model_type = 'swin'
self.transformer = timm.create_model(model_name, pretrained=pretrained, pretrained_strict=False,
use_checkpoint=args.use_checkpoint)
self.n_features = self.transformer.num_features
self.transformer.head = nn.Identity()
elif 'efficientnet' in model_name:
self.model_type = 'efficientnet'
self.cnn = timm.create_model(model_name, pretrained=pretrained)
self.n_features = self.cnn.num_features
self.cnn.global_pool = nn.Identity()
self.cnn.classifier = nn.Identity()
else:
raise NotImplemented
def swin_forward(self, transformer, x):
x = transformer.patch_embed(x)
if transformer.absolute_pos_embed is not None:
x = x + transformer.absolute_pos_embed
x = transformer.pos_drop(x)
def layer_forward(layer, x, hiddens):
for blk in layer.blocks:
if not torch.jit.is_scripting() and layer.use_checkpoint:
x = torch.utils.checkpoint.checkpoint(blk, x)
else:
x = blk(x)
H, W = layer.input_resolution
B, L, C = x.shape
hiddens.append(x.view(B, H, W, C))
if layer.downsample is not None:
x = layer.downsample(x)
return x, hiddens
hiddens = []
for layer in transformer.layers:
x, hiddens = layer_forward(layer, x, hiddens)
x = transformer.norm(x) # B L C
hiddens[-1] = x.view_as(hiddens[-1])
return x, hiddens
def forward(self, x, refs=None):
if self.model_type in ['resnet', 'efficientnet']:
features = self.cnn(x)
features = features.permute(0, 2, 3, 1)
hiddens = []
elif self.model_type == 'swin':
if 'patch' in self.model_name:
features, hiddens = self.swin_forward(self.transformer, x)
else:
features, hiddens = self.transformer(x)
else:
raise NotImplemented
return features, hiddens
class TransformerDecoderBase(nn.Module):
def __init__(self, args):
super().__init__()
self.args = args
self.enc_trans_layer = nn.Sequential(
nn.Linear(args.encoder_dim, args.dec_hidden_size)
# nn.LayerNorm(args.dec_hidden_size, eps=1e-6)
)
self.enc_pos_emb = nn.Embedding(144, args.encoder_dim) if args.enc_pos_emb else None
self.decoder = TransformerDecoder(
num_layers=args.dec_num_layers,
d_model=args.dec_hidden_size,
heads=args.dec_attn_heads,
d_ff=args.dec_hidden_size * 4,
copy_attn=False,
self_attn_type="scaled-dot",
dropout=args.hidden_dropout,
attention_dropout=args.attn_dropout,
max_relative_positions=args.max_relative_positions,
aan_useffn=False,
full_context_alignment=False,
alignment_layer=0,
alignment_heads=0,
pos_ffn_activation_fn='gelu'
)
def enc_transform(self, encoder_out):
batch_size = encoder_out.size(0)
encoder_dim = encoder_out.size(-1)
encoder_out = encoder_out.view(batch_size, -1, encoder_dim) # (batch_size, num_pixels, encoder_dim)
max_len = encoder_out.size(1)
device = encoder_out.device
if self.enc_pos_emb:
pos_emb = self.enc_pos_emb(torch.arange(max_len, device=device)).unsqueeze(0)
encoder_out = encoder_out + pos_emb
encoder_out = self.enc_trans_layer(encoder_out)
return encoder_out
class TransformerDecoderAR(TransformerDecoderBase):
"""Autoregressive Transformer Decoder"""
def __init__(self, args, tokenizer):
super().__init__(args)
self.tokenizer = tokenizer
self.vocab_size = len(self.tokenizer)
self.output_layer = nn.Linear(args.dec_hidden_size, self.vocab_size, bias=True)
self.embeddings = Embeddings(
word_vec_size=args.dec_hidden_size,
word_vocab_size=self.vocab_size,
word_padding_idx=PAD_ID,
position_encoding=True,
dropout=args.hidden_dropout)
def dec_embedding(self, tgt, step=None):
pad_idx = self.embeddings.word_padding_idx
tgt_pad_mask = tgt.data.eq(pad_idx).transpose(1, 2) # [B, 1, T_tgt]
emb = self.embeddings(tgt, step=step)
assert emb.dim() == 3 # batch x len x embedding_dim
return emb, tgt_pad_mask
def forward(self, encoder_out, labels, label_lengths):
"""Training mode"""
batch_size, max_len, _ = encoder_out.size()
memory_bank = self.enc_transform(encoder_out)
tgt = labels.unsqueeze(-1) # (b, t, 1)
tgt_emb, tgt_pad_mask = self.dec_embedding(tgt)
dec_out, *_ = self.decoder(tgt_emb=tgt_emb, memory_bank=memory_bank, tgt_pad_mask=tgt_pad_mask)
logits = self.output_layer(dec_out) # (b, t, h) -> (b, t, v)
return logits[:, :-1], labels[:, 1:], dec_out
def decode(self, encoder_out, beam_size: int, n_best: int, min_length: int = 1, max_length: int = 256,
labels=None):
"""Inference mode. Autoregressively decode the sequence. Only greedy search is supported now. Beam search is
out-dated. The labels is used for partial prediction, i.e. part of the sequence is given. In standard decoding,
labels=None."""
batch_size, max_len, _ = encoder_out.size()
memory_bank = self.enc_transform(encoder_out)
orig_labels = labels
if beam_size == 1:
decode_strategy = GreedySearch(
sampling_temp=0.0, keep_topk=1, batch_size=batch_size, min_length=min_length, max_length=max_length,
pad=PAD_ID, bos=SOS_ID, eos=EOS_ID,
return_attention=False, return_hidden=True)
else:
decode_strategy = BeamSearch(
beam_size=beam_size, n_best=n_best, batch_size=batch_size, min_length=min_length, max_length=max_length,
pad=PAD_ID, bos=SOS_ID, eos=EOS_ID,
return_attention=False)
# adapted from onmt.translate.translator
results = {
"predictions": None,
"scores": None,
"attention": None
}
# (2) prep decode_strategy. Possibly repeat src objects.
_, memory_bank = decode_strategy.initialize(memory_bank=memory_bank)
# (3) Begin decoding step by step:
for step in range(decode_strategy.max_length):
tgt = decode_strategy.current_predictions.view(-1, 1, 1)
if labels is not None:
label = labels[:, step].view(-1, 1, 1)
mask = label.eq(MASK_ID).long()
tgt = tgt * mask + label * (1 - mask)
tgt_emb, tgt_pad_mask = self.dec_embedding(tgt)
dec_out, dec_attn, *_ = self.decoder(tgt_emb=tgt_emb, memory_bank=memory_bank,
tgt_pad_mask=tgt_pad_mask, step=step)
attn = dec_attn.get("std", None)
dec_logits = self.output_layer(dec_out) # [b, t, h] => [b, t, v]
dec_logits = dec_logits.squeeze(1)
log_probs = F.log_softmax(dec_logits, dim=-1)
if self.tokenizer.output_constraint:
output_mask = [self.tokenizer.get_output_mask(id) for id in tgt.view(-1).tolist()]
output_mask = torch.tensor(output_mask, device=log_probs.device)
log_probs.masked_fill_(output_mask, -10000)
label = labels[:, step + 1] if labels is not None and step + 1 < labels.size(1) else None
decode_strategy.advance(log_probs, attn, dec_out, label)
any_finished = decode_strategy.is_finished.any()
if any_finished:
decode_strategy.update_finished()
if decode_strategy.done:
break
select_indices = decode_strategy.select_indices
if any_finished:
# Reorder states.
memory_bank = memory_bank.index_select(0, select_indices)
if labels is not None:
labels = labels.index_select(0, select_indices)
self.map_state(lambda state, dim: state.index_select(dim, select_indices))
results["scores"] = decode_strategy.scores # fixed to be average of token scores
results["token_scores"] = decode_strategy.token_scores
results["predictions"] = decode_strategy.predictions
results["attention"] = decode_strategy.attention
results["hidden"] = decode_strategy.hidden
if orig_labels is not None:
for i in range(batch_size):
pred = results["predictions"][i][0]
label = orig_labels[i][1:len(pred) + 1]
mask = label.eq(MASK_ID).long()
pred = pred[:len(label)]
results["predictions"][i][0] = pred * mask + label * (1 - mask)
return results["predictions"], results['scores'], results["token_scores"], results["hidden"]
# adapted from onmt.decoders.transformer
def map_state(self, fn):
def _recursive_map(struct, batch_dim=0):
for k, v in struct.items():
if v is not None:
if isinstance(v, dict):
_recursive_map(v)
else:
struct[k] = fn(v, batch_dim)
if self.decoder.state["cache"] is not None:
_recursive_map(self.decoder.state["cache"])
class GraphPredictor(nn.Module):
def __init__(self, decoder_dim, coords=False):
super(GraphPredictor, self).__init__()
self.coords = coords
self.mlp = nn.Sequential(
nn.Linear(decoder_dim * 2, decoder_dim), nn.GELU(),
nn.Linear(decoder_dim, 7)
)
if coords:
self.coords_mlp = nn.Sequential(
nn.Linear(decoder_dim, decoder_dim), nn.GELU(),
nn.Linear(decoder_dim, 2)
)
def forward(self, hidden, indices=None):
b, l, dim = hidden.size()
if indices is None:
index = [i for i in range(3, l, 3)]
hidden = hidden[:, index]
else:
batch_id = torch.arange(b).unsqueeze(1).expand_as(indices).reshape(-1)
indices = indices.view(-1)
hidden = hidden[batch_id, indices].view(b, -1, dim)
b, l, dim = hidden.size()
results = {}
hh = torch.cat([hidden.unsqueeze(2).expand(b, l, l, dim), hidden.unsqueeze(1).expand(b, l, l, dim)], dim=3)
results['edges'] = self.mlp(hh).permute(0, 3, 1, 2)
if self.coords:
results['coords'] = self.coords_mlp(hidden)
return results
def get_edge_prediction(edge_prob):
if not edge_prob:
return [], []
n = len(edge_prob)
if n == 0:
return [], []
for i in range(n):
for j in range(i + 1, n):
for k in range(5):
edge_prob[i][j][k] = (edge_prob[i][j][k] + edge_prob[j][i][k]) / 2
edge_prob[j][i][k] = edge_prob[i][j][k]
edge_prob[i][j][5] = (edge_prob[i][j][5] + edge_prob[j][i][6]) / 2
edge_prob[i][j][6] = (edge_prob[i][j][6] + edge_prob[j][i][5]) / 2
edge_prob[j][i][5] = edge_prob[i][j][6]
edge_prob[j][i][6] = edge_prob[i][j][5]
prediction = np.argmax(edge_prob, axis=2).tolist()
score = np.max(edge_prob, axis=2).tolist()
return prediction, score
class Decoder(nn.Module):
"""This class is a wrapper for different decoder architectures, and support multiple decoders."""
def __init__(self, args, tokenizer):
super(Decoder, self).__init__()
self.args = args
self.formats = args.formats
self.tokenizer = tokenizer
decoder = {}
for format_ in args.formats:
if format_ == 'edges':
decoder['edges'] = GraphPredictor(args.dec_hidden_size, coords=args.continuous_coords)
else:
decoder[format_] = TransformerDecoderAR(args, tokenizer[format_])
self.decoder = nn.ModuleDict(decoder)
self.compute_confidence = args.compute_confidence
def forward(self, encoder_out, hiddens, refs):
"""Training mode. Compute the logits with teacher forcing."""
results = {}
refs = to_device(refs, encoder_out.device)
for format_ in self.formats:
if format_ == 'edges':
if 'atomtok_coords' in results:
dec_out = results['atomtok_coords'][2]
predictions = self.decoder['edges'](dec_out, indices=refs['atom_indices'][0])
elif 'chartok_coords' in results:
dec_out = results['chartok_coords'][2]
predictions = self.decoder['edges'](dec_out, indices=refs['atom_indices'][0])
else:
raise NotImplemented
targets = {'edges': refs['edges']}
if 'coords' in predictions:
targets['coords'] = refs['coords']
results['edges'] = (predictions, targets)
else:
labels, label_lengths = refs[format_]
results[format_] = self.decoder[format_](encoder_out, labels, label_lengths)
return results
def decode(self, encoder_out, hiddens=None, refs=None, beam_size=1, n_best=1):
"""Inference mode. Call each decoder's decode method (if required), convert the output format (e.g. token to
sequence). Beam search is not supported yet."""
results = {}
predictions = []
for format_ in self.formats:
if format_ in ['atomtok', 'atomtok_coords', 'chartok_coords']:
max_len = FORMAT_INFO[format_]['max_len']
results[format_] = self.decoder[format_].decode(encoder_out, beam_size, n_best, max_length=max_len)
outputs, scores, token_scores, *_ = results[format_]
beam_preds = [[self.tokenizer[format_].sequence_to_smiles(x.tolist()) for x in pred]
for pred in outputs]
predictions = [{format_: pred[0]} for pred in beam_preds]
if self.compute_confidence:
for i in range(len(predictions)):
# -1: y score, -2: x score, -3: symbol score
indices = np.array(predictions[i][format_]['indices']) - 3
if format_ == 'chartok_coords':
atom_scores = []
for symbol, index in zip(predictions[i][format_]['symbols'], indices):
atom_score = (np.prod(token_scores[i][0][index - len(symbol) + 1:index + 1])
** (1 / len(symbol))).item()
atom_scores.append(atom_score)
else:
atom_scores = np.array(token_scores[i][0])[indices].tolist()
predictions[i][format_]['atom_scores'] = atom_scores
predictions[i][format_]['average_token_score'] = scores[i][0]
if format_ == 'edges':
if 'atomtok_coords' in results:
atom_format = 'atomtok_coords'
elif 'chartok_coords' in results:
atom_format = 'chartok_coords'
else:
raise NotImplemented
dec_out = results[atom_format][3] # batch x n_best x len x dim
for i in range(len(dec_out)):
hidden = dec_out[i][0].unsqueeze(0) # 1 * len * dim
indices = torch.LongTensor(predictions[i][atom_format]['indices']).unsqueeze(0) # 1 * k
pred = self.decoder['edges'](hidden, indices) # k * k
prob = F.softmax(pred['edges'].squeeze(0).permute(1, 2, 0), dim=2).tolist() # k * k * 7
edge_pred, edge_score = get_edge_prediction(prob)
predictions[i]['edges'] = edge_pred
if self.compute_confidence:
predictions[i]['edge_scores'] = edge_score
predictions[i]['edge_score_product'] = np.sqrt(np.prod(edge_score)).item()
predictions[i]['overall_score'] = predictions[i][atom_format]['average_token_score'] * \
predictions[i]['edge_score_product']
predictions[i][atom_format].pop('average_token_score')
predictions[i].pop('edge_score_product')
return predictions
|