File size: 17,792 Bytes
5e9bd47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
import numpy as np

import torch
import torch.nn as nn
import torch.nn.functional as F

import timm

from .utils import FORMAT_INFO, to_device
from .tokenizer import SOS_ID, EOS_ID, PAD_ID, MASK_ID
from .inference import GreedySearch, BeamSearch
from .transformer import TransformerDecoder, Embeddings


class Encoder(nn.Module):
    def __init__(self, args, pretrained=False):
        super().__init__()
        model_name = args.encoder
        self.model_name = model_name
        if model_name.startswith('resnet'):
            self.model_type = 'resnet'
            self.cnn = timm.create_model(model_name, pretrained=pretrained)
            self.n_features = self.cnn.num_features  # encoder_dim
            self.cnn.global_pool = nn.Identity()
            self.cnn.fc = nn.Identity()
        elif model_name.startswith('swin'):
            self.model_type = 'swin'
            self.transformer = timm.create_model(model_name, pretrained=pretrained, pretrained_strict=False,
                                                 use_checkpoint=args.use_checkpoint)
            self.n_features = self.transformer.num_features
            self.transformer.head = nn.Identity()
        elif 'efficientnet' in model_name:
            self.model_type = 'efficientnet'
            self.cnn = timm.create_model(model_name, pretrained=pretrained)
            self.n_features = self.cnn.num_features
            self.cnn.global_pool = nn.Identity()
            self.cnn.classifier = nn.Identity()
        else:
            raise NotImplemented

    def swin_forward(self, transformer, x):
        x = transformer.patch_embed(x)
        if transformer.absolute_pos_embed is not None:
            x = x + transformer.absolute_pos_embed
        x = transformer.pos_drop(x)

        def layer_forward(layer, x, hiddens):
            for blk in layer.blocks:
                if not torch.jit.is_scripting() and layer.use_checkpoint:
                    x = torch.utils.checkpoint.checkpoint(blk, x)
                else:
                    x = blk(x)
            H, W = layer.input_resolution
            B, L, C = x.shape
            hiddens.append(x.view(B, H, W, C))
            if layer.downsample is not None:
                x = layer.downsample(x)
            return x, hiddens

        hiddens = []
        for layer in transformer.layers:
            x, hiddens = layer_forward(layer, x, hiddens)
        x = transformer.norm(x)  # B L C
        hiddens[-1] = x.view_as(hiddens[-1])
        return x, hiddens

    def forward(self, x, refs=None):
        if self.model_type in ['resnet', 'efficientnet']:
            features = self.cnn(x)
            features = features.permute(0, 2, 3, 1)
            hiddens = []
        elif self.model_type == 'swin':
            if 'patch' in self.model_name:
                features, hiddens = self.swin_forward(self.transformer, x)
            else:
                features, hiddens = self.transformer(x)
        else:
            raise NotImplemented
        return features, hiddens


class TransformerDecoderBase(nn.Module):

    def __init__(self, args):
        super().__init__()
        self.args = args

        self.enc_trans_layer = nn.Sequential(
            nn.Linear(args.encoder_dim, args.dec_hidden_size)
            # nn.LayerNorm(args.dec_hidden_size, eps=1e-6)
        )
        self.enc_pos_emb = nn.Embedding(144, args.encoder_dim) if args.enc_pos_emb else None

        self.decoder = TransformerDecoder(
            num_layers=args.dec_num_layers,
            d_model=args.dec_hidden_size,
            heads=args.dec_attn_heads,
            d_ff=args.dec_hidden_size * 4,
            copy_attn=False,
            self_attn_type="scaled-dot",
            dropout=args.hidden_dropout,
            attention_dropout=args.attn_dropout,
            max_relative_positions=args.max_relative_positions,
            aan_useffn=False,
            full_context_alignment=False,
            alignment_layer=0,
            alignment_heads=0,
            pos_ffn_activation_fn='gelu'
        )

    def enc_transform(self, encoder_out):
        batch_size = encoder_out.size(0)
        encoder_dim = encoder_out.size(-1)
        encoder_out = encoder_out.view(batch_size, -1, encoder_dim)  # (batch_size, num_pixels, encoder_dim)
        max_len = encoder_out.size(1)
        device = encoder_out.device
        if self.enc_pos_emb:
            pos_emb = self.enc_pos_emb(torch.arange(max_len, device=device)).unsqueeze(0)
            encoder_out = encoder_out + pos_emb
        encoder_out = self.enc_trans_layer(encoder_out)
        return encoder_out


class TransformerDecoderAR(TransformerDecoderBase):
    """Autoregressive Transformer Decoder"""

    def __init__(self, args, tokenizer):
        super().__init__(args)
        self.tokenizer = tokenizer
        self.vocab_size = len(self.tokenizer)
        self.output_layer = nn.Linear(args.dec_hidden_size, self.vocab_size, bias=True)
        self.embeddings = Embeddings(
            word_vec_size=args.dec_hidden_size,
            word_vocab_size=self.vocab_size,
            word_padding_idx=PAD_ID,
            position_encoding=True,
            dropout=args.hidden_dropout)

    def dec_embedding(self, tgt, step=None):
        pad_idx = self.embeddings.word_padding_idx
        tgt_pad_mask = tgt.data.eq(pad_idx).transpose(1, 2)  # [B, 1, T_tgt]
        emb = self.embeddings(tgt, step=step)
        assert emb.dim() == 3  # batch x len x embedding_dim
        return emb, tgt_pad_mask

    def forward(self, encoder_out, labels, label_lengths):
        """Training mode"""
        batch_size, max_len, _ = encoder_out.size()
        memory_bank = self.enc_transform(encoder_out)

        tgt = labels.unsqueeze(-1)  # (b, t, 1)
        tgt_emb, tgt_pad_mask = self.dec_embedding(tgt)
        dec_out, *_ = self.decoder(tgt_emb=tgt_emb, memory_bank=memory_bank, tgt_pad_mask=tgt_pad_mask)

        logits = self.output_layer(dec_out)  # (b, t, h) -> (b, t, v)
        return logits[:, :-1], labels[:, 1:], dec_out

    def decode(self, encoder_out, beam_size: int, n_best: int, min_length: int = 1, max_length: int = 256,
               labels=None):
        """Inference mode. Autoregressively decode the sequence. Only greedy search is supported now. Beam search is
        out-dated. The labels is used for partial prediction, i.e. part of the sequence is given. In standard decoding,
        labels=None."""
        batch_size, max_len, _ = encoder_out.size()
        memory_bank = self.enc_transform(encoder_out)
        orig_labels = labels

        if beam_size == 1:
            decode_strategy = GreedySearch(
                sampling_temp=0.0, keep_topk=1, batch_size=batch_size, min_length=min_length, max_length=max_length,
                pad=PAD_ID, bos=SOS_ID, eos=EOS_ID,
                return_attention=False, return_hidden=True)
        else:
            decode_strategy = BeamSearch(
                beam_size=beam_size, n_best=n_best, batch_size=batch_size, min_length=min_length, max_length=max_length,
                pad=PAD_ID, bos=SOS_ID, eos=EOS_ID,
                return_attention=False)

        # adapted from onmt.translate.translator
        results = {
            "predictions": None,
            "scores": None,
            "attention": None
        }

        # (2) prep decode_strategy. Possibly repeat src objects.
        _, memory_bank = decode_strategy.initialize(memory_bank=memory_bank)

        # (3) Begin decoding step by step:
        for step in range(decode_strategy.max_length):
            tgt = decode_strategy.current_predictions.view(-1, 1, 1)
            if labels is not None:
                label = labels[:, step].view(-1, 1, 1)
                mask = label.eq(MASK_ID).long()
                tgt = tgt * mask + label * (1 - mask)
            tgt_emb, tgt_pad_mask = self.dec_embedding(tgt)
            dec_out, dec_attn, *_ = self.decoder(tgt_emb=tgt_emb, memory_bank=memory_bank,
                                                 tgt_pad_mask=tgt_pad_mask, step=step)

            attn = dec_attn.get("std", None)

            dec_logits = self.output_layer(dec_out)  # [b, t, h] => [b, t, v]
            dec_logits = dec_logits.squeeze(1)
            log_probs = F.log_softmax(dec_logits, dim=-1)

            if self.tokenizer.output_constraint:
                output_mask = [self.tokenizer.get_output_mask(id) for id in tgt.view(-1).tolist()]
                output_mask = torch.tensor(output_mask, device=log_probs.device)
                log_probs.masked_fill_(output_mask, -10000)

            label = labels[:, step + 1] if labels is not None and step + 1 < labels.size(1) else None
            decode_strategy.advance(log_probs, attn, dec_out, label)
            any_finished = decode_strategy.is_finished.any()
            if any_finished:
                decode_strategy.update_finished()
                if decode_strategy.done:
                    break

            select_indices = decode_strategy.select_indices
            if any_finished:
                # Reorder states.
                memory_bank = memory_bank.index_select(0, select_indices)
                if labels is not None:
                    labels = labels.index_select(0, select_indices)
                self.map_state(lambda state, dim: state.index_select(dim, select_indices))

        results["scores"] = decode_strategy.scores  # fixed to be average of token scores
        results["token_scores"] = decode_strategy.token_scores
        results["predictions"] = decode_strategy.predictions
        results["attention"] = decode_strategy.attention
        results["hidden"] = decode_strategy.hidden
        if orig_labels is not None:
            for i in range(batch_size):
                pred = results["predictions"][i][0]
                label = orig_labels[i][1:len(pred) + 1]
                mask = label.eq(MASK_ID).long()
                pred = pred[:len(label)]
                results["predictions"][i][0] = pred * mask + label * (1 - mask)

        return results["predictions"], results['scores'], results["token_scores"], results["hidden"]

    # adapted from onmt.decoders.transformer
    def map_state(self, fn):
        def _recursive_map(struct, batch_dim=0):
            for k, v in struct.items():
                if v is not None:
                    if isinstance(v, dict):
                        _recursive_map(v)
                    else:
                        struct[k] = fn(v, batch_dim)

        if self.decoder.state["cache"] is not None:
            _recursive_map(self.decoder.state["cache"])


class GraphPredictor(nn.Module):

    def __init__(self, decoder_dim, coords=False):
        super(GraphPredictor, self).__init__()
        self.coords = coords
        self.mlp = nn.Sequential(
            nn.Linear(decoder_dim * 2, decoder_dim), nn.GELU(),
            nn.Linear(decoder_dim, 7)
        )
        if coords:
            self.coords_mlp = nn.Sequential(
                nn.Linear(decoder_dim, decoder_dim), nn.GELU(),
                nn.Linear(decoder_dim, 2)
            )

    def forward(self, hidden, indices=None):
        b, l, dim = hidden.size()
        if indices is None:
            index = [i for i in range(3, l, 3)]
            hidden = hidden[:, index]
        else:
            batch_id = torch.arange(b).unsqueeze(1).expand_as(indices).reshape(-1)
            indices = indices.view(-1)
            hidden = hidden[batch_id, indices].view(b, -1, dim)
        b, l, dim = hidden.size()
        results = {}
        hh = torch.cat([hidden.unsqueeze(2).expand(b, l, l, dim), hidden.unsqueeze(1).expand(b, l, l, dim)], dim=3)
        results['edges'] = self.mlp(hh).permute(0, 3, 1, 2)
        if self.coords:
            results['coords'] = self.coords_mlp(hidden)
        return results


def get_edge_prediction(edge_prob):
    if not edge_prob:
        return [], []
    n = len(edge_prob)
    if n == 0:
        return [], []
    for i in range(n):
        for j in range(i + 1, n):
            for k in range(5):
                edge_prob[i][j][k] = (edge_prob[i][j][k] + edge_prob[j][i][k]) / 2
                edge_prob[j][i][k] = edge_prob[i][j][k]
            edge_prob[i][j][5] = (edge_prob[i][j][5] + edge_prob[j][i][6]) / 2
            edge_prob[i][j][6] = (edge_prob[i][j][6] + edge_prob[j][i][5]) / 2
            edge_prob[j][i][5] = edge_prob[i][j][6]
            edge_prob[j][i][6] = edge_prob[i][j][5]
    prediction = np.argmax(edge_prob, axis=2).tolist()
    score = np.max(edge_prob, axis=2).tolist()
    return prediction, score


class Decoder(nn.Module):
    """This class is a wrapper for different decoder architectures, and support multiple decoders."""

    def __init__(self, args, tokenizer):
        super(Decoder, self).__init__()
        self.args = args
        self.formats = args.formats
        self.tokenizer = tokenizer
        decoder = {}
        for format_ in args.formats:
            if format_ == 'edges':
                decoder['edges'] = GraphPredictor(args.dec_hidden_size, coords=args.continuous_coords)
            else:
                decoder[format_] = TransformerDecoderAR(args, tokenizer[format_])
        self.decoder = nn.ModuleDict(decoder)
        self.compute_confidence = args.compute_confidence

    def forward(self, encoder_out, hiddens, refs):
        """Training mode. Compute the logits with teacher forcing."""
        results = {}
        refs = to_device(refs, encoder_out.device)
        for format_ in self.formats:
            if format_ == 'edges':
                if 'atomtok_coords' in results:
                    dec_out = results['atomtok_coords'][2]
                    predictions = self.decoder['edges'](dec_out, indices=refs['atom_indices'][0])
                elif 'chartok_coords' in results:
                    dec_out = results['chartok_coords'][2]
                    predictions = self.decoder['edges'](dec_out, indices=refs['atom_indices'][0])
                else:
                    raise NotImplemented
                targets = {'edges': refs['edges']}
                if 'coords' in predictions:
                    targets['coords'] = refs['coords']
                results['edges'] = (predictions, targets)
            else:
                labels, label_lengths = refs[format_]
                results[format_] = self.decoder[format_](encoder_out, labels, label_lengths)
        return results

    def decode(self, encoder_out, hiddens=None, refs=None, beam_size=1, n_best=1):
        """Inference mode. Call each decoder's decode method (if required), convert the output format (e.g. token to
        sequence). Beam search is not supported yet."""
        results = {}
        predictions = []
        for format_ in self.formats:
            if format_ in ['atomtok', 'atomtok_coords', 'chartok_coords']:
                max_len = FORMAT_INFO[format_]['max_len']
                results[format_] = self.decoder[format_].decode(encoder_out, beam_size, n_best, max_length=max_len)
                outputs, scores, token_scores, *_ = results[format_]
                beam_preds = [[self.tokenizer[format_].sequence_to_smiles(x.tolist()) for x in pred]
                              for pred in outputs]
                predictions = [{format_: pred[0]} for pred in beam_preds]
                if self.compute_confidence:
                    for i in range(len(predictions)):
                        # -1: y score, -2: x score, -3: symbol score
                        indices = np.array(predictions[i][format_]['indices']) - 3
                        if format_ == 'chartok_coords':
                            atom_scores = []
                            for symbol, index in zip(predictions[i][format_]['symbols'], indices):
                                atom_score = (np.prod(token_scores[i][0][index - len(symbol) + 1:index + 1])
                                              ** (1 / len(symbol))).item()
                                atom_scores.append(atom_score)
                        else:
                            atom_scores = np.array(token_scores[i][0])[indices].tolist()
                        predictions[i][format_]['atom_scores'] = atom_scores
                        predictions[i][format_]['average_token_score'] = scores[i][0]
            if format_ == 'edges':
                if 'atomtok_coords' in results:
                    atom_format = 'atomtok_coords'
                elif 'chartok_coords' in results:
                    atom_format = 'chartok_coords'
                else:
                    raise NotImplemented
                dec_out = results[atom_format][3]  # batch x n_best x len x dim
                for i in range(len(dec_out)):
                    hidden = dec_out[i][0].unsqueeze(0)  # 1 * len * dim
                    indices = torch.LongTensor(predictions[i][atom_format]['indices']).unsqueeze(0)  # 1 * k
                    pred = self.decoder['edges'](hidden, indices)  # k * k
                    prob = F.softmax(pred['edges'].squeeze(0).permute(1, 2, 0), dim=2).tolist()  # k * k * 7
                    edge_pred, edge_score = get_edge_prediction(prob)
                    predictions[i]['edges'] = edge_pred
                    if self.compute_confidence:
                        predictions[i]['edge_scores'] = edge_score
                        predictions[i]['edge_score_product'] = np.sqrt(np.prod(edge_score)).item()
                        predictions[i]['overall_score'] = predictions[i][atom_format]['average_token_score'] * \
                                                          predictions[i]['edge_score_product']
                        predictions[i][atom_format].pop('average_token_score')
                        predictions[i].pop('edge_score_product')
        return predictions