File size: 25,829 Bytes
5e9bd47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 |
import copy
import traceback
import numpy as np
import multiprocessing
import rdkit
import rdkit.Chem as Chem
rdkit.RDLogger.DisableLog('rdApp.*')
from SmilesPE.pretokenizer import atomwise_tokenizer
from .constants import RGROUP_SYMBOLS, ABBREVIATIONS, VALENCES, FORMULA_REGEX
def is_valid_mol(s, format_='atomtok'):
if format_ == 'atomtok':
mol = Chem.MolFromSmiles(s)
elif format_ == 'inchi':
if not s.startswith('InChI=1S'):
s = f"InChI=1S/{s}"
mol = Chem.MolFromInchi(s)
else:
raise NotImplemented
return mol is not None
def _convert_smiles_to_inchi(smiles):
try:
mol = Chem.MolFromSmiles(smiles)
inchi = Chem.MolToInchi(mol)
except:
inchi = None
return inchi
def convert_smiles_to_inchi(smiles_list, num_workers=16):
with multiprocessing.Pool(num_workers) as p:
inchi_list = p.map(_convert_smiles_to_inchi, smiles_list, chunksize=128)
n_success = sum([x is not None for x in inchi_list])
r_success = n_success / len(inchi_list)
inchi_list = [x if x else 'InChI=1S/H2O/h1H2' for x in inchi_list]
return inchi_list, r_success
def merge_inchi(inchi1, inchi2):
replaced = 0
inchi1 = copy.deepcopy(inchi1)
for i in range(len(inchi1)):
if inchi1[i] == 'InChI=1S/H2O/h1H2':
inchi1[i] = inchi2[i]
replaced += 1
return inchi1, replaced
def _get_num_atoms(smiles):
try:
return Chem.MolFromSmiles(smiles).GetNumAtoms()
except:
return 0
def get_num_atoms(smiles, num_workers=16):
if type(smiles) is str:
return _get_num_atoms(smiles)
with multiprocessing.Pool(num_workers) as p:
num_atoms = p.map(_get_num_atoms, smiles)
return num_atoms
def normalize_nodes(nodes, flip_y=True):
x, y = nodes[:, 0], nodes[:, 1]
minx, maxx = min(x), max(x)
miny, maxy = min(y), max(y)
x = (x - minx) / max(maxx - minx, 1e-6)
if flip_y:
y = (maxy - y) / max(maxy - miny, 1e-6)
else:
y = (y - miny) / max(maxy - miny, 1e-6)
return np.stack([x, y], axis=1)
def _verify_chirality(mol, coords, symbols, edges, debug=False):
try:
n = mol.GetNumAtoms()
# Make a temp mol to find chiral centers
mol_tmp = mol.GetMol()
Chem.SanitizeMol(mol_tmp)
chiral_centers = Chem.FindMolChiralCenters(
mol_tmp, includeUnassigned=True, includeCIP=False, useLegacyImplementation=False)
chiral_center_ids = [idx for idx, _ in chiral_centers] # List[Tuple[int, any]] -> List[int]
# correction to clear pre-condition violation (for some corner cases)
for bond in mol.GetBonds():
if bond.GetBondType() == Chem.BondType.SINGLE:
bond.SetBondDir(Chem.BondDir.NONE)
# Create conformer from 2D coordinate
conf = Chem.Conformer(n)
conf.Set3D(True)
for i, (x, y) in enumerate(coords):
conf.SetAtomPosition(i, (x, 1 - y, 0))
mol.AddConformer(conf)
Chem.SanitizeMol(mol)
Chem.AssignStereochemistryFrom3D(mol)
# NOTE: seems that only AssignStereochemistryFrom3D can handle double bond E/Z
# So we do this first, remove the conformer and add back the 2D conformer for chiral correction
mol.RemoveAllConformers()
conf = Chem.Conformer(n)
conf.Set3D(False)
for i, (x, y) in enumerate(coords):
conf.SetAtomPosition(i, (x, 1 - y, 0))
mol.AddConformer(conf)
# Magic, inferring chirality from coordinates and BondDir. DO NOT CHANGE.
Chem.SanitizeMol(mol)
Chem.AssignChiralTypesFromBondDirs(mol)
Chem.AssignStereochemistry(mol, force=True)
# Second loop to reset any wedge/dash bond to be starting from the chiral center)
for i in chiral_center_ids:
for j in range(n):
if edges[i][j] == 5:
# assert edges[j][i] == 6
mol.RemoveBond(i, j)
mol.AddBond(i, j, Chem.BondType.SINGLE)
mol.GetBondBetweenAtoms(i, j).SetBondDir(Chem.BondDir.BEGINWEDGE)
elif edges[i][j] == 6:
# assert edges[j][i] == 5
mol.RemoveBond(i, j)
mol.AddBond(i, j, Chem.BondType.SINGLE)
mol.GetBondBetweenAtoms(i, j).SetBondDir(Chem.BondDir.BEGINDASH)
Chem.AssignChiralTypesFromBondDirs(mol)
Chem.AssignStereochemistry(mol, force=True)
# reset chiral tags for non-carbon atom
for atom in mol.GetAtoms():
if atom.GetSymbol() != "C":
atom.SetChiralTag(Chem.rdchem.ChiralType.CHI_UNSPECIFIED)
mol = mol.GetMol()
except Exception as e:
if debug:
raise e
pass
return mol
def _parse_tokens(tokens: list):
"""
Parse tokens of condensed formula into list of pairs `(elt, num)`
where `num` is the multiplicity of the atom (or nested condensed formula) `elt`
Used by `_parse_formula`, which does the same thing but takes a formula in string form as input
"""
elements = []
i = 0
j = 0
while i < len(tokens):
if tokens[i] == '(':
while j < len(tokens) and tokens[j] != ')':
j += 1
elt = _parse_tokens(tokens[i + 1:j])
else:
elt = tokens[i]
j += 1
if j < len(tokens) and tokens[j].isnumeric():
num = int(tokens[j])
j += 1
else:
num = 1
elements.append((elt, num))
i = j
return elements
def _parse_formula(formula: str):
"""
Parse condensed formula into list of pairs `(elt, num)`
where `num` is the subscript to the atom (or nested condensed formula) `elt`
Example: "C2H4O" -> [('C', 2), ('H', 4), ('O', 1)]
"""
tokens = FORMULA_REGEX.findall(formula)
# if ''.join(tokens) != formula:
# tokens = FORMULA_REGEX_BACKUP.findall(formula)
return _parse_tokens(tokens)
def _expand_carbon(elements: list):
"""
Given list of pairs `(elt, num)`, output single list of all atoms in order,
expanding carbon sequences (CaXb where a > 1 and X is halogen) if necessary
Example: [('C', 2), ('H', 4), ('O', 1)] -> ['C', 'H', 'H', 'C', 'H', 'H', 'O'])
"""
expanded = []
i = 0
while i < len(elements):
elt, num = elements[i]
# expand carbon sequence
if elt == 'C' and num > 1 and i + 1 < len(elements):
next_elt, next_num = elements[i + 1]
quotient, remainder = next_num // num, next_num % num
for _ in range(num):
expanded.append('C')
for _ in range(quotient):
expanded.append(next_elt)
for _ in range(remainder):
expanded.append(next_elt)
i += 2
# recurse if `elt` itself is a list (nested formula)
elif isinstance(elt, list):
new_elt = _expand_carbon(elt)
for _ in range(num):
expanded.append(new_elt)
i += 1
# simplest case: simply append `elt` `num` times
else:
for _ in range(num):
expanded.append(elt)
i += 1
return expanded
def _expand_abbreviation(abbrev):
"""
Expand abbreviation into its SMILES; also converts [Rn] to [n*]
Used in `_condensed_formula_list_to_smiles` when encountering abbrev. in condensed formula
"""
if abbrev in ABBREVIATIONS:
return ABBREVIATIONS[abbrev].smiles
if abbrev in RGROUP_SYMBOLS or (abbrev[0] == 'R' and abbrev[1:].isdigit()):
if abbrev[1:].isdigit():
return f'[{abbrev[1:]}*]'
return '*'
return f'[{abbrev}]'
def _get_bond_symb(bond_num):
"""
Get SMILES symbol for a bond given bond order
Used in `_condensed_formula_list_to_smiles` while writing the SMILES string
"""
if bond_num == 0:
return '.'
if bond_num == 1:
return ''
if bond_num == 2:
return '='
if bond_num == 3:
return '#'
return ''
def _condensed_formula_list_to_smiles(formula_list, start_bond, end_bond=None, direction=None):
"""
Converts condensed formula (in the form of a list of symbols) to smiles
Input:
`formula_list`: e.g. ['C', 'H', 'H', 'N', ['C', 'H', 'H', 'H'], ['C', 'H', 'H', 'H']] for CH2N(CH3)2
`start_bond`: # bonds attached to beginning of formula
`end_bond`: # bonds attached to end of formula (deduce automatically if None)
`direction` (1, -1, or None): direction in which to process the list (1: left to right; -1: right to left; None: deduce automatically)
Returns:
`smiles`: smiles corresponding to input condensed formula
`bonds_left`: bonds remaining at the end of the formula (for connecting back to main molecule); should equal `end_bond` if specified
`num_trials`: number of trials
`success` (bool): whether conversion was successful
"""
# `direction` not specified: try left to right; if fails, try right to left
if direction is None:
num_trials = 1
for dir_choice in [1, -1]:
smiles, bonds_left, trials, success = _condensed_formula_list_to_smiles(formula_list, start_bond, end_bond, dir_choice)
num_trials += trials
if success:
return smiles, bonds_left, num_trials, success
return None, None, num_trials, False
assert direction == 1 or direction == -1
def dfs(smiles, bonds_left, cur_idx, add_idx):
"""
`smiles`: SMILES string so far
`cur_idx`: index (in list `formula`) of current atom (i.e. atom to which subsequent atoms are being attached)
`cur_flat_idx`: index of current atom in list of atom tokens of SMILES so far
`bonds_left`: bonds remaining on current atom for subsequent atoms to be attached to
`add_idx`: index (in list `formula`) of atom to be attached to current atom
`add_flat_idx`: index of atom to be added in list of atom tokens of SMILES so far
Note: "atom" could refer to nested condensed formula (e.g. CH3 in CH2N(CH3)2)
"""
num_trials = 1
# end of formula: return result
if (direction == 1 and add_idx == len(formula_list)) or (direction == -1 and add_idx == -1):
if end_bond is not None and end_bond != bonds_left:
return smiles, bonds_left, num_trials, False
return smiles, bonds_left, num_trials, True
# no more bonds but there are atoms remaining: conversion failed
if bonds_left <= 0:
return smiles, bonds_left, num_trials, False
to_add = formula_list[add_idx] # atom to be added to current atom
if isinstance(to_add, list): # "atom" added is a list (i.e. nested condensed formula): assume valence of 1
if bonds_left > 1:
# "atom" added does not use up remaining bonds of current atom
# get smiles of "atom" (which is itself a condensed formula)
add_str, val, trials, success = _condensed_formula_list_to_smiles(to_add, 1, None, direction)
if val > 0:
add_str = _get_bond_symb(val + 1) + add_str
num_trials += trials
if not success:
return smiles, bonds_left, num_trials, False
# put smiles of "atom" in parentheses and append to smiles; go to next atom to add to current atom
result = dfs(smiles + f'({add_str})', bonds_left - 1, cur_idx, add_idx + direction)
else:
# "atom" added uses up remaining bonds of current atom
# get smiles of "atom" and bonds left on it
add_str, bonds_left, trials, success = _condensed_formula_list_to_smiles(to_add, 1, None, direction)
num_trials += trials
if not success:
return smiles, bonds_left, num_trials, False
# append smiles of "atom" (without parentheses) to smiles; it becomes new current atom
result = dfs(smiles + add_str, bonds_left, add_idx, add_idx + direction)
smiles, bonds_left, trials, success = result
num_trials += trials
return smiles, bonds_left, num_trials, success
# atom added is a single symbol (as opposed to nested condensed formula)
for val in VALENCES.get(to_add, [1]): # try all possible valences of atom added
add_str = _expand_abbreviation(to_add) # expand to smiles if symbol is abbreviation
if bonds_left > val: # atom added does not use up remaining bonds of current atom; go to next atom to add to current atom
if cur_idx >= 0:
add_str = _get_bond_symb(val) + add_str
result = dfs(smiles + f'({add_str})', bonds_left - val, cur_idx, add_idx + direction)
else: # atom added uses up remaining bonds of current atom; it becomes new current atom
if cur_idx >= 0:
add_str = _get_bond_symb(bonds_left) + add_str
result = dfs(smiles + add_str, val - bonds_left, add_idx, add_idx + direction)
trials, success = result[2:]
num_trials += trials
if success:
return result[0], result[1], num_trials, success
if num_trials > 10000:
break
return smiles, bonds_left, num_trials, False
cur_idx = -1 if direction == 1 else len(formula_list)
add_idx = 0 if direction == 1 else len(formula_list) - 1
return dfs('', start_bond, cur_idx, add_idx)
def get_smiles_from_symbol(symbol, mol, atom, bonds):
"""
Convert symbol (abbrev. or condensed formula) to smiles
If condensed formula, determine parsing direction and num. bonds on each side using coordinates
"""
print(symbol)
if symbol in ABBREVIATIONS:
return ABBREVIATIONS[symbol].smiles
if len(symbol) > 20:
return None
#mol_check = Chem.MolFromSmiles(symbol)
#if mol_check:
# print(symbol) # Print the symbol to debug
# return symbol
total_bonds = int(sum([bond.GetBondTypeAsDouble() for bond in bonds]))
formula_list = _expand_carbon(_parse_formula(symbol))
smiles, bonds_left, num_trails, success = _condensed_formula_list_to_smiles(formula_list, total_bonds, None)
if success:
mol_check = Chem.MolFromSmiles(smiles) # Check if the SMILES is valid
if mol_check:
print(f"smiles:{smiles}") # Print the symbol to debug
return smiles
mol_check = Chem.MolFromSmiles(symbol)
if mol_check:
print(f"symbol:{symbol}") # Print the symbol to debug
return symbol
return None
def _replace_functional_group(smiles):
smiles = smiles.replace('<unk>', 'C')
for i, r in enumerate(RGROUP_SYMBOLS):
symbol = f'[{r}]'
if symbol in smiles:
if r[0] == 'R' and r[1:].isdigit():
smiles = smiles.replace(symbol, f'[{int(r[1:])}*]')
else:
smiles = smiles.replace(symbol, '*')
# For unknown tokens (i.e. rdkit cannot parse), replace them with [{isotope}*], where isotope is an identifier.
tokens = atomwise_tokenizer(smiles)
new_tokens = []
mappings = {} # isotope : symbol
isotope = 50
for token in tokens:
if token[0] == '[':
if token[1:-1] in ABBREVIATIONS or Chem.AtomFromSmiles(token) is None:
while f'[{isotope}*]' in smiles or f'[{isotope}*]' in new_tokens:
isotope += 1
placeholder = f'[{isotope}*]'
mappings[isotope] = token[1:-1]
new_tokens.append(placeholder)
continue
new_tokens.append(token)
smiles = ''.join(new_tokens)
return smiles, mappings
def convert_smiles_to_mol(smiles):
if smiles is None or smiles == '':
return None
try:
mol = Chem.MolFromSmiles(smiles)
except:
return None
return mol
BOND_TYPES = {1: Chem.rdchem.BondType.SINGLE, 2: Chem.rdchem.BondType.DOUBLE, 3: Chem.rdchem.BondType.TRIPLE}
def _expand_functional_group(mol, mappings, debug=False):
def _need_expand(mol, mappings):
return any([len(Chem.GetAtomAlias(atom)) > 0 for atom in mol.GetAtoms()]) or len(mappings) > 0
if _need_expand(mol, mappings):
mol_w = Chem.RWMol(mol)
num_atoms = mol_w.GetNumAtoms()
for i, atom in enumerate(mol_w.GetAtoms()): # reset radical electrons
atom.SetNumRadicalElectrons(0)
atoms_to_remove = []
for i in range(num_atoms):
atom = mol_w.GetAtomWithIdx(i)
if atom.GetSymbol() == '*':
symbol = Chem.GetAtomAlias(atom)
isotope = atom.GetIsotope()
if isotope > 0 and isotope in mappings:
symbol = mappings[isotope]
if not (isinstance(symbol, str) and len(symbol) > 0):
continue
# rgroups do not need to be expanded
if symbol in RGROUP_SYMBOLS:
continue
bonds = atom.GetBonds()
sub_smiles = get_smiles_from_symbol(symbol, mol_w, atom, bonds)
# create mol object for abbreviation/condensed formula from its SMILES
mol_r = convert_smiles_to_mol(sub_smiles)
if mol_r is None:
# atom.SetAtomicNum(6)
atom.SetIsotope(0)
continue
# remove bonds connected to abbreviation/condensed formula
adjacent_indices = [bond.GetOtherAtomIdx(i) for bond in bonds]
for adjacent_idx in adjacent_indices:
mol_w.RemoveBond(i, adjacent_idx)
adjacent_atoms = [mol_w.GetAtomWithIdx(adjacent_idx) for adjacent_idx in adjacent_indices]
for adjacent_atom, bond in zip(adjacent_atoms, bonds):
adjacent_atom.SetNumRadicalElectrons(int(bond.GetBondTypeAsDouble()))
# get indices of atoms of main body that connect to substituent
bonding_atoms_w = adjacent_indices
# assume indices are concated after combine mol_w and mol_r
bonding_atoms_r = [mol_w.GetNumAtoms()]
for atm in mol_r.GetAtoms():
if atm.GetNumRadicalElectrons() and atm.GetIdx() > 0:
bonding_atoms_r.append(mol_w.GetNumAtoms() + atm.GetIdx())
# combine main body and substituent into a single molecule object
combo = Chem.CombineMols(mol_w, mol_r)
# connect substituent to main body with bonds
mol_w = Chem.RWMol(combo)
# if len(bonding_atoms_r) == 1: # substituent uses one atom to bond to main body
for atm in bonding_atoms_w:
bond_order = mol_w.GetAtomWithIdx(atm).GetNumRadicalElectrons()
mol_w.AddBond(atm, bonding_atoms_r[0], order=BOND_TYPES[bond_order])
# reset radical electrons
for atm in bonding_atoms_w:
mol_w.GetAtomWithIdx(atm).SetNumRadicalElectrons(0)
for atm in bonding_atoms_r:
mol_w.GetAtomWithIdx(atm).SetNumRadicalElectrons(0)
atoms_to_remove.append(i)
# Remove atom in the end, otherwise the id will change
# Reverse the order and remove atoms with larger id first
atoms_to_remove.sort(reverse=True)
for i in atoms_to_remove:
mol_w.RemoveAtom(i)
smiles = Chem.MolToSmiles(mol_w)
mol = mol_w.GetMol()
else:
smiles = Chem.MolToSmiles(mol)
return smiles, mol
def _convert_graph_to_smiles(coords, symbols, edges, image=None, debug=False):
mol = Chem.RWMol()
n = len(symbols)
ids = []
for i in range(n):
symbol = symbols[i]
if symbol[0] == '[':
symbol = symbol[1:-1]
if symbol in RGROUP_SYMBOLS:
atom = Chem.Atom("*")
if symbol[0] == 'R' and symbol[1:].isdigit():
atom.SetIsotope(int(symbol[1:]))
Chem.SetAtomAlias(atom, symbol)
elif symbol in ABBREVIATIONS:
atom = Chem.Atom("*")
Chem.SetAtomAlias(atom, symbol)
else:
try: # try to get SMILES of atom
atom = Chem.AtomFromSmiles(symbols[i])
atom.SetChiralTag(Chem.rdchem.ChiralType.CHI_UNSPECIFIED)
except: # otherwise, abbreviation or condensed formula
atom = Chem.Atom("*")
Chem.SetAtomAlias(atom, symbol)
if atom.GetSymbol() == '*':
atom.SetProp('molFileAlias', symbol)
idx = mol.AddAtom(atom)
assert idx == i
ids.append(idx)
for i in range(n):
for j in range(i + 1, n):
if edges[i][j] == 1:
mol.AddBond(ids[i], ids[j], Chem.BondType.SINGLE)
elif edges[i][j] == 2:
mol.AddBond(ids[i], ids[j], Chem.BondType.DOUBLE)
elif edges[i][j] == 3:
mol.AddBond(ids[i], ids[j], Chem.BondType.TRIPLE)
elif edges[i][j] == 4:
mol.AddBond(ids[i], ids[j], Chem.BondType.AROMATIC)
elif edges[i][j] == 5:
mol.AddBond(ids[i], ids[j], Chem.BondType.SINGLE)
mol.GetBondBetweenAtoms(ids[i], ids[j]).SetBondDir(Chem.BondDir.BEGINWEDGE)
elif edges[i][j] == 6:
mol.AddBond(ids[i], ids[j], Chem.BondType.SINGLE)
mol.GetBondBetweenAtoms(ids[i], ids[j]).SetBondDir(Chem.BondDir.BEGINDASH)
pred_smiles = '<invalid>'
try:
# TODO: move to an util function
if image is not None:
height, width, _ = image.shape
ratio = width / height
coords = [[x * ratio * 10, y * 10] for x, y in coords]
mol = _verify_chirality(mol, coords, symbols, edges, debug)
# molblock is obtained before expanding func groups, otherwise the expanded group won't have coordinates.
# TODO: make sure molblock has the abbreviation information
pred_molblock = Chem.MolToMolBlock(mol)
pred_smiles, mol = _expand_functional_group(mol, {}, debug)
success = True
except Exception as e:
if debug:
print(traceback.format_exc())
pred_molblock = ''
success = False
if debug:
return pred_smiles, pred_molblock, mol, success
return pred_smiles, pred_molblock, success
def convert_graph_to_smiles(coords, symbols, edges, images=None, num_workers=16):
with multiprocessing.Pool(num_workers) as p:
if images is None:
results = p.starmap(_convert_graph_to_smiles, zip(coords, symbols, edges), chunksize=128)
else:
results = p.starmap(_convert_graph_to_smiles, zip(coords, symbols, edges, images), chunksize=128)
smiles_list, molblock_list, success = zip(*results)
r_success = np.mean(success)
return smiles_list, molblock_list, r_success
def _postprocess_smiles(smiles, coords=None, symbols=None, edges=None, molblock=False, debug=False):
if type(smiles) is not str or smiles == '':
return '', False
mol = None
pred_molblock = ''
try:
pred_smiles = smiles
pred_smiles, mappings = _replace_functional_group(pred_smiles)
if coords is not None and symbols is not None and edges is not None:
pred_smiles = pred_smiles.replace('@', '').replace('/', '').replace('\\', '')
mol = Chem.RWMol(Chem.MolFromSmiles(pred_smiles, sanitize=False))
mol = _verify_chirality(mol, coords, symbols, edges, debug)
else:
mol = Chem.MolFromSmiles(pred_smiles, sanitize=False)
# pred_smiles = Chem.MolToSmiles(mol, isomericSmiles=True, canonical=True)
if molblock:
pred_molblock = Chem.MolToMolBlock(mol)
pred_smiles, mol = _expand_functional_group(mol, mappings)
success = True
except Exception as e:
if debug:
print(traceback.format_exc())
pred_smiles = smiles
pred_molblock = ''
success = False
if debug:
return pred_smiles, pred_molblock, mol, success
return pred_smiles, pred_molblock, success
def postprocess_smiles(smiles, coords=None, symbols=None, edges=None, molblock=False, num_workers=16):
with multiprocessing.Pool(num_workers) as p:
if coords is not None and symbols is not None and edges is not None:
results = p.starmap(_postprocess_smiles, zip(smiles, coords, symbols, edges), chunksize=128)
else:
results = p.map(_postprocess_smiles, smiles, chunksize=128)
smiles_list, molblock_list, success = zip(*results)
r_success = np.mean(success)
return smiles_list, molblock_list, r_success
def _keep_main_molecule(smiles, debug=False):
try:
mol = Chem.MolFromSmiles(smiles)
frags = Chem.GetMolFrags(mol, asMols=True)
if len(frags) > 1:
num_atoms = [m.GetNumAtoms() for m in frags]
main_mol = frags[np.argmax(num_atoms)]
smiles = Chem.MolToSmiles(main_mol)
except Exception as e:
if debug:
print(traceback.format_exc())
return smiles
def keep_main_molecule(smiles, num_workers=16):
with multiprocessing.Pool(num_workers) as p:
results = p.map(_keep_main_molecule, smiles, chunksize=128)
return results
|