File size: 8,732 Bytes
5e9bd47
 
 
 
 
 
 
f1f2574
 
 
 
5e9bd47
 
 
 
 
 
 
 
 
 
f1f2574
5e9bd47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1f2574
5e9bd47
 
 
 
 
 
 
 
 
 
 
 
 
 
f1f2574
5e9bd47
 
 
 
 
 
 
 
 
 
 
 
 
 
f1f2574
 
 
 
 
 
5e9bd47
 
 
 
 
 
 
 
 
 
 
 
 
f1f2574
5e9bd47
 
 
 
f1f2574
5e9bd47
 
 
 
 
 
 
f1f2574
5e9bd47
 
b291e50
5e9bd47
 
b291e50
5e9bd47
 
 
 
 
 
 
 
 
f1f2574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
238966a
f1f2574
 
 
 
 
 
 
 
 
 
da428e0
 
f1f2574
 
558de77
f1f2574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import os
import gradio as gr
import json
from rxnim import RXNIM
from getReaction import generate_combined_image
import torch
from rxn.reaction import Reaction
from rdkit import Chem
from rdkit.Chem import rdChemReactions
from rdkit.Chem import Draw


PROMPT_DIR = "prompts/"
ckpt_path = "./rxn/model/model.ckpt"
model = Reaction(ckpt_path, device=torch.device('cpu'))

# 定义 prompt 文件名到友好名字的映射
PROMPT_NAMES = {
    "2_RxnOCR.txt": "Reaction Image Parsing Workflow",
}
example_diagram = "examples/exp.png"
rdkit_image = "examples/image.webp"

def list_prompt_files_with_names():
    """
    列出 prompts 目录下的所有 .txt 文件,为没有名字的生成默认名字。
    返回 {friendly_name: filename} 映射。
    """
    prompt_files = {}
    for f in os.listdir(PROMPT_DIR):
        if f.endswith(".txt"):
            # 如果文件名有预定义的名字,使用预定义名字
            friendly_name = PROMPT_NAMES.get(f, f"Task: {os.path.splitext(f)[0]}")
            prompt_files[friendly_name] = f
    return prompt_files

def parse_reactions(output_json):
    """
    解析 JSON 格式的反应数据并格式化输出,包含颜色定制。
    """
    reactions_data = json.loads(output_json)  # 转换 JSON 字符串为字典
    reactions_list = reactions_data.get("reactions", [])
    detailed_output = []
    smiles_output = [] 

    for reaction in reactions_list:
        reaction_id = reaction.get("reaction_id", "Unknown ID")
        reactants = [r.get("smiles", "Unknown") for r in reaction.get("reactants", [])]
        conditions = [
            f"<span style='color:red'>{c.get('smiles', c.get('text', 'Unknown'))}[{c.get('role', 'Unknown')}]</span>"
            for c in reaction.get("conditions", [])
        ]
        conditions_1 = [
            f"<span style='color:black'>{c.get('smiles', c.get('text', 'Unknown'))}[{c.get('role', 'Unknown')}]</span>"
            for c in reaction.get("conditions", [])
        ]
        products = [f"<span style='color:orange'>{p.get('smiles', 'Unknown')}</span>" for p in reaction.get("products", [])]
        products_1 = [f"<span style='color:black'>{p.get('smiles', 'Unknown')}</span>" for p in reaction.get("products", [])]
        products_2 = [r.get("smiles", "Unknown") for r in reaction.get("products", [])]

        # 构造反应的完整字符串,定制字体颜色
        full_reaction = f"{'.'.join(reactants)}>>{'.'.join(products_1)} | {', '.join(conditions_1)}"
        full_reaction = f"<span style='color:black'>{full_reaction}</span>"
        
        # 详细反应格式化输出
        reaction_output = f"<b>Reaction: </b> {reaction_id}<br>"
        reaction_output += f"  Reactants: <span style='color:blue'>{', '.join(reactants)}</span><br>"
        reaction_output += f"  Conditions: {', '.join(conditions)}<br>"
        reaction_output += f"  Products: {', '.join(products)}<br>"
        reaction_output += f"  <b>Full Reaction:</b> {full_reaction}<br>"
        reaction_output += "<br>"
        detailed_output.append(reaction_output)

        reaction_smiles = f"{'.'.join(reactants)}>>{'.'.join(products_2)}"
        smiles_output.append(reaction_smiles)



    return detailed_output, smiles_output

def process_chem_image(image, selected_task):
    chem_mllm = RXNIM()

    # 将友好名字转换为实际文件名
    prompt_path = os.path.join(PROMPT_DIR, prompts_with_names[selected_task])
    image_path = "temp_image.png"
    image.save(image_path)

    # 调用 RXNIM 处理
    rxnim_result = chem_mllm.process(image_path, prompt_path)

    # 将 JSON 结果解析为结构化输出
    detailed_reactions, smiles_output = parse_reactions(rxnim_result)

    # 调用 RxnScribe 模型处理并生成整合图像
    predictions = model.predict_image_file(image_path, molscribe=True, ocr=True)
    combined_image_path = generate_combined_image(predictions, image_path)
    #combined_image_path = model.draw_predictions(predictions, image_path)

    json_file_path = "output.json"
    with open(json_file_path, "w") as json_file:
        json.dump(json.loads(rxnim_result), json_file, indent=4)


    # 返回详细反应和整合图像
    return "\n\n".join(detailed_reactions), smiles_output, combined_image_path, example_diagram, json_file_path



prompts_with_names = list_prompt_files_with_names()


examples = [
    
    ["examples/reaction1.png", "Reaction Image Parsing Workflow"],
    ["examples/reaction2.png", "Reaction Image Parsing Workflow"],
    ["examples/reaction3.png", "Reaction Image Parsing Workflow"],
    ["examples/reaction4.png", "Reaction Image Parsing Workflow"],
]

# 定义 Gradio 界面
with gr.Blocks() as demo:
    gr.Markdown(
"""

    <center> <h1>Towards Large-scale Chemical Reaction Image Parsing via a Multimodal Large Language Model<h1></center>

    Upload a reaction image and select a predefined task prompt.
    """)

    

    # 上半部分,输入区域
    with gr.Row(equal_height=False):
        with gr.Column(scale=1):  # 左侧列
            image_input = gr.Image(type="pil", label="Upload Reaction Image")
            task_radio = gr.Radio(
                choices=list(prompts_with_names.keys()),
                label="Select a predefined task",
            )
            with gr.Row():  # Clear 和 Submit 按钮放在同一行
                clear_button = gr.Button("Clear")
                process_button = gr.Button("Run", elem_id="submit-btn")
            
            gr.Markdown("### Reaction Imge Parsing Output")
            reaction_output = gr.HTML(label="Reaction outputs")
            
        
        with gr.Column(scale=1):
                
                gr.Markdown("### Reaction Extraction Output")
                visualization_output = gr.Image(label="Visualization Output") 
                schematic_diagram = gr.Image(value=example_diagram, label="Schematic Diagram")      
                

        with gr.Column(scale=1):  
            gr.Markdown("### Machine-readable Data Output")
            smiles_output = gr.Textbox(
                label="Reaction SMILES",
                show_copy_button=True,
                interactive=False,
                visible=False,
            )
            

    # 下半部分,图像和 JSON 输出
            @gr.render(inputs = smiles_output)  # 使用gr.render修饰器绑定输入和渲染逻辑
            def show_split(inputs):  # 定义处理和展示分割文本的函数
                if not inputs or isinstance(inputs, str) and inputs.strip() == "":  # 检查输入文本是否为空
                    return gr.Textbox(label= "SMILES of Reaction i"), gr.Image(value=rdkit_image, label= "RDKit Image of Reaction i")
                else:
                    # 假设输入是逗号分隔的 SMILES 字符串
                    smiles_list = inputs.split(",")
                    smiles_list = [item.strip("[]' ") for item in smiles_list]
                    components = []  # 初始化一个组件列表,用于存放每个 SMILES 对应的 Textbox 组件
                    for i, smiles in enumerate(smiles_list): 
                        smiles.replace('"', '').replace("'", "").replace("[", "").replace("]", "")
                        reaction = rdChemReactions.ReactionFromSmarts(smiles)
                        if reaction:
                            img = Draw.ReactionToImage(reaction)
                        components.append(gr.Textbox(value=smiles,label= f"SMILES of Reaction {i + 1} ", show_copy_button=True, interactive=False))
                        components.append(gr.Image(value=img,label= f"RDKit Image of Reaction {i + 1} ")) 
                    return components  # 返回包含所有 SMILES Textbox 组件的列表
                
            download_json = gr.File(label="Download JSON File")
        
        
            

    # 示例部分
    gr.Examples(
        examples=examples,
        inputs=[image_input, task_radio],
        outputs=[reaction_output, smiles_output, visualization_output],
    )

    # 绑定功能
    clear_button.click(
        lambda: (None, None, None, None, None),
        inputs=[],
        outputs=[
            image_input,
            task_radio,
            reaction_output,
            smiles_output,
            visualization_output,
        ],
    )

    process_button.click(
        process_chem_image,
        inputs=[image_input, task_radio],
        outputs=[
            reaction_output,
            smiles_output,
            visualization_output,
            schematic_diagram,
            download_json,
        ],
    )

demo.css = """
#submit-btn {
    background-color: #FF914D;
    color: white;
    font-weight: bold;
}
"""
demo.launch()