import os import openai import streamlit as st from dotenv import load_dotenv import boto3 import base64 import datetime import json load_dotenv() OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") client = openai.OpenAI(api_key=OPENAI_API_KEY) dynamodb = boto3.resource( 'dynamodb', aws_access_key_id=os.getenv('AWS_ACCESS_KEY_ID'), aws_secret_access_key=os.getenv('AWS_SECRET_ACCESS_KEY'), region_name='ap-northeast-2' # 원하는 리전으로 변경 ) table = dynamodb.Table('ChatbotConversations') #original_allowed_usernames = os.getenv('ALLOWED_NAMES') #allowed_usernames = json.loads(original_allowed_usernames) original_allowed_usernames = os.getenv('ALLOWED_NAMES') original_allowed_usernames = original_allowed_usernames.strip() # JSON 파싱을 수행합니다. allowed_usernames = json.loads(original_allowed_usernames) def is_valid_username(username): return username in allowed_usernames st.title(':male-teacher: AI ROBLOX Tutor - Feedback') st.header(':two: Tutor for Feedack: Get feedbacks and suggestions on your own Roblox game codes!') user_id = st.text_input(label='Assigned ID.') if is_valid_username(user_id): st.write(f'ID: :violet[{user_id}]') purpose = st.text_input( label='Write the purpose of the code that you want to get feedback on.', placeholder='purpose of your code' ) st.write(f'Purpose: :violet[{purpose}]') eval = st.text_input( label='Write the code that you want to get feedback on.', placeholder='copy and paste syntax-based code script' ) st.write(f'Codes: :violet[{eval}]') query2 = "purpose: " + purpose + ". texted codes: " + eval query_2 = 'AT_TUTOR_2: ' + query2 # 이미지 입력 image_uploaded2 = st.file_uploader("OPTIONAL: Upload an image of the code that you want to get feedback on", type=["png", "jpg", "jpeg"]) def evaluator_persona_query(eval, purpose, image_data=None): import openai openai.api_key = OPENAI_API_KEY VISION_PROMPT_MESSAGES = [ { "role": "system", "content": "Your role: You are an AI tutor providing corrective and explanatory feedback on students' Roblox game scripts. Your goal is to help learners understand computational thinking concepts through meaningful, targeted feedback. Context: - The learner is coding in Lua within the Roblox game development environment. - The learner is submitting a code snippet along with a brief description of its intended function. - The tutor provides structured feedback based on **computational thinking (CT) concepts** such as: - **Algorithm & Procedures:** Does the code follow structured logic? - **Automation & Efficiency:** Are there redundant lines or unnecessary loops? - **Debugging & Error Handling:** Does the code have syntax/logical errors? - **Modularity & Reusability:** Are functions used effectively? User Input: - A code snippet written in Lua for a game feature. - A description of what the learner **intends** the code to do. Expected AI Response: 1. **Confirm understanding** by summarizing what the code is supposed to do. 2. **Identify and correct errors** (if any) with explanations: - Highlight incorrect syntax or logic errors. - Suggest alternative, optimized code structures. 3. **Provide explanations** for computational thinking concepts that apply to this code. 4. **Suggest improvements** based on best practices in coding and game design. 5. **Encourage reflection** by asking the learner to predict how changes will affect gameplay." ##CSTA & ISTE (2011). Computational Thinking in K-12 education – teacher resources, 2nd edition, CSTA & ISTE }, {"role": "user", "content": "Read and find the meaning of the code in the image and text and evaluate the code. purpose of the code: "+ purpose + "code to be analysed: " + eval}, ] if image_data is not None: encoded_image = base64.b64encode(image_data).decode("utf-8") VISION_PROMPT_MESSAGES.append({"role": "user", "content": encoded_image}) params = { "model": "gpt-4o-mini", "messages": VISION_PROMPT_MESSAGES, "max_tokens": 3000, # 1024, } trimmed_answer = "" # trimmed_answer 초기화 try: full_answer = openai.chat.completions.create(**params) trimmed_answer = full_answer.choices[0].message.content except Exception as e: print(f"Error: {e}") trimmed_answer = f"Error: {e}" # 오류 메시지를 trimmed_answer에 할당 return trimmed_answer # 버튼 클릭 button2 = st.button(':sparkles: suggestions :sparkles:') def save_message(user_id, message, timestamp=None): if timestamp is None: timestamp = datetime.datetime.now() # datetime 객체를 DynamoDB 지원 타입으로 변환 if isinstance(timestamp, datetime.datetime): timestamp = int(timestamp.timestamp()) # Unix 타임스탬프(초 단위 정수)로 변환 table.put_item( Item={ 'UserID': user_id, 'Timestamp': timestamp, 'Message': message } ) if button2: eval = eval save_message(user_id, query_2) if image_uploaded2 is not None: image_data = image_uploaded2.read() answer = evaluator_persona_query(eval, purpose, image_data) else: answer = evaluator_persona_query(eval, purpose) answer_2 = 'AT_TUTOR_2: ' + answer save_message(user_id, answer_2) st.write(f'{answer}') else: st.warning("Invalid username. Please enter a valid username.")