from fastapi import FastAPI, HTTPException from pydantic import BaseModel from transformers import pipeline import logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) app = FastAPI() # Load models once on startup try: ner_model = pipeline("ner", model="dslim/bert-base-NER", aggregation_strategy="simple") sentiment_model = pipeline("sentiment-analysis", model="ProsusAI/finbert") except Exception as e: logger.error(f"Model loading failed: {e}") ner_model = None sentiment_model = None class TextRequest(BaseModel): text: str @app.get("/") def home(): return {"message": "Crypto News API is alive!"} @app.post("/sentiment") def analyze_sentiment(req: TextRequest): if not sentiment_model: raise HTTPException(status_code=503, detail="Sentiment model not available") text = req.text if not text: raise HTTPException(status_code=400, detail="Text cannot be empty") result = sentiment_model(text[:512])[0] return { "label": result["label"], "score": round(result["score"] * 100, 2) } @app.post("/ner") def analyze_ner(req: TextRequest): if not ner_model: raise HTTPException(status_code=503, detail="NER model not available") text = req.text if not text: raise HTTPException(status_code=400, detail="Text cannot be empty") entities = ner_model(text[:512]) # Filter relevant entities (ORG, PERSON, MISC, PRODUCT, GPE) relevant = [e['word'] for e in entities if e['entity_group'] in ['ORG', 'PERSON', 'MISC', 'PRODUCT', 'GPE']] # Remove duplicates and limit to 5 unique_entities = list(dict.fromkeys(relevant))[:5] return {"entities": unique_entities}