Spaces:
Sleeping
Sleeping
Commit
Β·
c9523a5
1
Parent(s):
d04009a
Fix matplotlib dir and add httpx to requirements
Browse files- app.py +84 -41
- requirements.txt +2 -1
app.py
CHANGED
@@ -7,38 +7,31 @@ os.environ["HF_HOME"] = "/tmp"
|
|
7 |
os.makedirs("/tmp/huggingface", exist_ok=True)
|
8 |
os.makedirs("/tmp/mplconfig", exist_ok=True)
|
9 |
|
10 |
-
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
11 |
-
|
12 |
os.environ["HF_HOME"] = "/tmp"
|
13 |
-
|
14 |
-
|
15 |
-
model = AutoModelForTokenClassification.from_pretrained("dslim/bert-base-NER")
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
from fastapi import FastAPI, HTTPException
|
|
|
20 |
from pydantic import BaseModel
|
21 |
-
from transformers import pipeline
|
22 |
-
from fastapi.responses import StreamingResponse
|
23 |
import matplotlib
|
24 |
-
matplotlib.use('Agg')
|
25 |
-
import matplotlib.pyplot as plt
|
26 |
import httpx
|
27 |
import io
|
28 |
-
import requests
|
29 |
-
import datetime
|
30 |
-
from io import BytesIO
|
31 |
import logging
|
|
|
32 |
|
33 |
-
#
|
34 |
logging.basicConfig(level=logging.INFO)
|
35 |
logger = logging.getLogger(__name__)
|
36 |
|
37 |
-
#
|
38 |
app = FastAPI()
|
39 |
|
40 |
-
# Load
|
41 |
try:
|
|
|
|
|
42 |
ner_model = pipeline("ner", model="dslim/bert-base-NER", aggregation_strategy="simple")
|
43 |
sentiment_model = pipeline("sentiment-analysis", model="ProsusAI/finbert")
|
44 |
logger.info("Models loaded successfully.")
|
@@ -47,14 +40,17 @@ except Exception as e:
|
|
47 |
ner_model = None
|
48 |
sentiment_model = None
|
49 |
|
50 |
-
#
|
51 |
class TextRequest(BaseModel):
|
52 |
text: str
|
53 |
|
54 |
-
# Request body schema for chart
|
55 |
class CoinRequest(BaseModel):
|
56 |
coin_id: str
|
57 |
|
|
|
|
|
|
|
|
|
58 |
@app.get("/")
|
59 |
def home():
|
60 |
return {"message": "Crypto News API is alive!"}
|
@@ -63,15 +59,12 @@ def home():
|
|
63 |
def analyze_sentiment(req: TextRequest):
|
64 |
if not sentiment_model:
|
65 |
raise HTTPException(status_code=503, detail="Sentiment model not available")
|
66 |
-
text = req.text.strip()
|
67 |
-
if not text:
|
68 |
-
raise HTTPException(status_code=400, detail="Text cannot be empty")
|
69 |
try:
|
|
|
|
|
|
|
70 |
result = sentiment_model(text[:512])[0]
|
71 |
-
return {
|
72 |
-
"label": result["label"],
|
73 |
-
"score": round(result["score"] * 100, 2)
|
74 |
-
}
|
75 |
except Exception as e:
|
76 |
logger.error(f"Sentiment analysis error: {e}")
|
77 |
raise HTTPException(status_code=500, detail="Sentiment analysis failed")
|
@@ -80,10 +73,10 @@ def analyze_sentiment(req: TextRequest):
|
|
80 |
def analyze_ner(req: TextRequest):
|
81 |
if not ner_model:
|
82 |
raise HTTPException(status_code=503, detail="NER model not available")
|
83 |
-
text = req.text.strip()
|
84 |
-
if not text:
|
85 |
-
raise HTTPException(status_code=400, detail="Text cannot be empty")
|
86 |
try:
|
|
|
|
|
|
|
87 |
entities = ner_model(text[:512])
|
88 |
relevant = [e['word'] for e in entities if e.get('entity_group') in ['ORG', 'PERSON', 'MISC', 'PRODUCT', 'GPE']]
|
89 |
unique_entities = list(dict.fromkeys(relevant))[:5]
|
@@ -92,39 +85,89 @@ def analyze_ner(req: TextRequest):
|
|
92 |
logger.error(f"NER analysis error: {e}")
|
93 |
raise HTTPException(status_code=500, detail="NER analysis failed")
|
94 |
|
95 |
-
|
96 |
-
|
97 |
@app.post("/chart")
|
98 |
def generate_chart(req: CoinRequest):
|
99 |
coin_id = req.coin_id.strip().lower()
|
100 |
logger.info(f"Generating chart for coin: {coin_id}")
|
101 |
-
|
102 |
try:
|
103 |
url = f"https://api.coingecko.com/api/v3/coins/{coin_id}/market_chart"
|
104 |
params = {"vs_currency": "usd", "days": "7"}
|
105 |
response = httpx.get(url, params=params)
|
106 |
-
|
107 |
if response.status_code != 200:
|
108 |
logger.error(f"CoinGecko API error: {response.text}")
|
109 |
raise HTTPException(status_code=502, detail="Failed to fetch coin data from CoinGecko")
|
110 |
-
|
111 |
prices = response.json()["prices"]
|
112 |
-
|
113 |
-
|
114 |
plt.figure(figsize=(6, 3))
|
115 |
plt.plot(values, color="blue")
|
116 |
plt.title(f"{coin_id.capitalize()} - Last 7 Days")
|
117 |
plt.xlabel("Time")
|
118 |
plt.ylabel("Price (USD)")
|
119 |
plt.grid(True)
|
120 |
-
|
121 |
buffer = io.BytesIO()
|
122 |
plt.savefig(buffer, format="png")
|
123 |
plt.close()
|
124 |
buffer.seek(0)
|
125 |
-
|
126 |
return StreamingResponse(buffer, media_type="image/png")
|
127 |
-
|
128 |
except Exception as e:
|
129 |
logger.exception(f"Chart generation error: {e}")
|
130 |
-
raise HTTPException(status_code=500, detail="Chart generation failed")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
os.makedirs("/tmp/huggingface", exist_ok=True)
|
8 |
os.makedirs("/tmp/mplconfig", exist_ok=True)
|
9 |
|
|
|
|
|
10 |
os.environ["HF_HOME"] = "/tmp"
|
11 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
12 |
+
from transformers import pipeline
|
|
|
|
|
|
|
|
|
13 |
from fastapi import FastAPI, HTTPException
|
14 |
+
from fastapi.responses import StreamingResponse, FileResponse
|
15 |
from pydantic import BaseModel
|
|
|
|
|
16 |
import matplotlib
|
17 |
+
matplotlib.use('Agg')
|
18 |
+
import matplotlib.pyplot as plt
|
19 |
import httpx
|
20 |
import io
|
|
|
|
|
|
|
21 |
import logging
|
22 |
+
import random
|
23 |
|
24 |
+
# Logging
|
25 |
logging.basicConfig(level=logging.INFO)
|
26 |
logger = logging.getLogger(__name__)
|
27 |
|
28 |
+
# FastAPI app
|
29 |
app = FastAPI()
|
30 |
|
31 |
+
# Load models
|
32 |
try:
|
33 |
+
tokenizer = AutoTokenizer.from_pretrained("dslim/bert-base-NER")
|
34 |
+
model = AutoModelForTokenClassification.from_pretrained("dslim/bert-base-NER")
|
35 |
ner_model = pipeline("ner", model="dslim/bert-base-NER", aggregation_strategy="simple")
|
36 |
sentiment_model = pipeline("sentiment-analysis", model="ProsusAI/finbert")
|
37 |
logger.info("Models loaded successfully.")
|
|
|
40 |
ner_model = None
|
41 |
sentiment_model = None
|
42 |
|
43 |
+
# Schemas
|
44 |
class TextRequest(BaseModel):
|
45 |
text: str
|
46 |
|
|
|
47 |
class CoinRequest(BaseModel):
|
48 |
coin_id: str
|
49 |
|
50 |
+
class VisualRequest(BaseModel):
|
51 |
+
coin_id: str
|
52 |
+
topic: str
|
53 |
+
|
54 |
@app.get("/")
|
55 |
def home():
|
56 |
return {"message": "Crypto News API is alive!"}
|
|
|
59 |
def analyze_sentiment(req: TextRequest):
|
60 |
if not sentiment_model:
|
61 |
raise HTTPException(status_code=503, detail="Sentiment model not available")
|
|
|
|
|
|
|
62 |
try:
|
63 |
+
text = req.text.strip()
|
64 |
+
if not text:
|
65 |
+
raise HTTPException(status_code=400, detail="Text cannot be empty")
|
66 |
result = sentiment_model(text[:512])[0]
|
67 |
+
return {"label": result["label"], "score": round(result["score"] * 100, 2)}
|
|
|
|
|
|
|
68 |
except Exception as e:
|
69 |
logger.error(f"Sentiment analysis error: {e}")
|
70 |
raise HTTPException(status_code=500, detail="Sentiment analysis failed")
|
|
|
73 |
def analyze_ner(req: TextRequest):
|
74 |
if not ner_model:
|
75 |
raise HTTPException(status_code=503, detail="NER model not available")
|
|
|
|
|
|
|
76 |
try:
|
77 |
+
text = req.text.strip()
|
78 |
+
if not text:
|
79 |
+
raise HTTPException(status_code=400, detail="Text cannot be empty")
|
80 |
entities = ner_model(text[:512])
|
81 |
relevant = [e['word'] for e in entities if e.get('entity_group') in ['ORG', 'PERSON', 'MISC', 'PRODUCT', 'GPE']]
|
82 |
unique_entities = list(dict.fromkeys(relevant))[:5]
|
|
|
85 |
logger.error(f"NER analysis error: {e}")
|
86 |
raise HTTPException(status_code=500, detail="NER analysis failed")
|
87 |
|
|
|
|
|
88 |
@app.post("/chart")
|
89 |
def generate_chart(req: CoinRequest):
|
90 |
coin_id = req.coin_id.strip().lower()
|
91 |
logger.info(f"Generating chart for coin: {coin_id}")
|
|
|
92 |
try:
|
93 |
url = f"https://api.coingecko.com/api/v3/coins/{coin_id}/market_chart"
|
94 |
params = {"vs_currency": "usd", "days": "7"}
|
95 |
response = httpx.get(url, params=params)
|
|
|
96 |
if response.status_code != 200:
|
97 |
logger.error(f"CoinGecko API error: {response.text}")
|
98 |
raise HTTPException(status_code=502, detail="Failed to fetch coin data from CoinGecko")
|
|
|
99 |
prices = response.json()["prices"]
|
100 |
+
_, values = zip(*prices)
|
|
|
101 |
plt.figure(figsize=(6, 3))
|
102 |
plt.plot(values, color="blue")
|
103 |
plt.title(f"{coin_id.capitalize()} - Last 7 Days")
|
104 |
plt.xlabel("Time")
|
105 |
plt.ylabel("Price (USD)")
|
106 |
plt.grid(True)
|
|
|
107 |
buffer = io.BytesIO()
|
108 |
plt.savefig(buffer, format="png")
|
109 |
plt.close()
|
110 |
buffer.seek(0)
|
|
|
111 |
return StreamingResponse(buffer, media_type="image/png")
|
|
|
112 |
except Exception as e:
|
113 |
logger.exception(f"Chart generation error: {e}")
|
114 |
+
raise HTTPException(status_code=500, detail="Chart generation failed")
|
115 |
+
|
116 |
+
# β
News image generator
|
117 |
+
def generate_news_image(topic: str) -> str:
|
118 |
+
file_path = f"/tmp/{topic.replace(' ', '_')}_news.png"
|
119 |
+
plt.figure(figsize=(6, 3))
|
120 |
+
plt.text(0.5, 0.5, f"π° {topic}", fontsize=18, ha='center')
|
121 |
+
plt.axis("off")
|
122 |
+
plt.savefig(file_path)
|
123 |
+
plt.close()
|
124 |
+
return file_path
|
125 |
+
|
126 |
+
# β
Chart image generator for visual endpoint (reuse)
|
127 |
+
def generate_chart_image(coin_id: str) -> str:
|
128 |
+
try:
|
129 |
+
url = f"https://api.coingecko.com/api/v3/coins/{coin_id}/market_chart"
|
130 |
+
params = {"vs_currency": "usd", "days": "7"}
|
131 |
+
response = httpx.get(url, params=params)
|
132 |
+
if response.status_code != 200:
|
133 |
+
raise Exception("CoinGecko data fetch failed")
|
134 |
+
prices = response.json()["prices"]
|
135 |
+
_, values = zip(*prices)
|
136 |
+
file_path = f"/tmp/{coin_id.replace(' ', '_')}_chart.png"
|
137 |
+
plt.figure(figsize=(6, 3))
|
138 |
+
plt.plot(values, color="green")
|
139 |
+
plt.title(f"{coin_id.capitalize()} Chart")
|
140 |
+
plt.grid(True)
|
141 |
+
plt.savefig(file_path)
|
142 |
+
plt.close()
|
143 |
+
return file_path
|
144 |
+
except Exception as e:
|
145 |
+
logger.error(f"Chart image generation error: {e}")
|
146 |
+
raise
|
147 |
+
|
148 |
+
# β
Random visual endpoint
|
149 |
+
@app.post("/visual")
|
150 |
+
def generate_visual(req: VisualRequest):
|
151 |
+
choice = random.choice(["chart", "news"])
|
152 |
+
logger.info(f"Generating visual: {choice}")
|
153 |
+
try:
|
154 |
+
if choice == "chart":
|
155 |
+
path = generate_chart_image(req.coin_id)
|
156 |
+
else:
|
157 |
+
path = generate_news_image(req.topic)
|
158 |
+
return FileResponse(path, media_type="image/png")
|
159 |
+
except Exception as e:
|
160 |
+
logger.error(f"Visual generation failed: {e}")
|
161 |
+
raise HTTPException(status_code=500, detail="Visual generation failed")
|
162 |
+
|
163 |
+
|
164 |
+
|
165 |
+
|
166 |
+
|
167 |
+
|
168 |
+
|
169 |
+
|
170 |
+
|
171 |
+
|
172 |
+
|
173 |
+
|
requirements.txt
CHANGED
@@ -3,4 +3,5 @@ uvicorn[standard]
|
|
3 |
transformers
|
4 |
torch
|
5 |
matplotlib
|
6 |
-
requests
|
|
|
|
3 |
transformers
|
4 |
torch
|
5 |
matplotlib
|
6 |
+
requests
|
7 |
+
httpx
|