Spaces:
Sleeping
Sleeping
Commit
·
5fca79f
1
Parent(s):
f2ee3e8
Added FastAPI app
Browse files- Dockerfile +16 -0
- app.py +52 -0
- requirements.txt +4 -0
Dockerfile
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.10-slim
|
2 |
+
|
3 |
+
# Working directory
|
4 |
+
WORKDIR /app
|
5 |
+
|
6 |
+
# Copy files
|
7 |
+
COPY requirements.txt .
|
8 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
9 |
+
|
10 |
+
COPY app.py .
|
11 |
+
|
12 |
+
# Expose port 7860 (as per HF spec)
|
13 |
+
EXPOSE 7860
|
14 |
+
|
15 |
+
# Command to run FastAPI app with uvicorn
|
16 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
from pydantic import BaseModel
|
3 |
+
from transformers import pipeline
|
4 |
+
import logging
|
5 |
+
|
6 |
+
logging.basicConfig(level=logging.INFO)
|
7 |
+
logger = logging.getLogger(__name__)
|
8 |
+
|
9 |
+
app = FastAPI()
|
10 |
+
|
11 |
+
# Load models once on startup
|
12 |
+
try:
|
13 |
+
ner_model = pipeline("ner", model="dslim/bert-base-NER", aggregation_strategy="simple")
|
14 |
+
sentiment_model = pipeline("sentiment-analysis", model="ProsusAI/finbert")
|
15 |
+
except Exception as e:
|
16 |
+
logger.error(f"Model loading failed: {e}")
|
17 |
+
ner_model = None
|
18 |
+
sentiment_model = None
|
19 |
+
|
20 |
+
class TextRequest(BaseModel):
|
21 |
+
text: str
|
22 |
+
|
23 |
+
@app.get("/")
|
24 |
+
def home():
|
25 |
+
return {"message": "Crypto News API is alive!"}
|
26 |
+
|
27 |
+
@app.post("/sentiment")
|
28 |
+
def analyze_sentiment(req: TextRequest):
|
29 |
+
if not sentiment_model:
|
30 |
+
raise HTTPException(status_code=503, detail="Sentiment model not available")
|
31 |
+
text = req.text
|
32 |
+
if not text:
|
33 |
+
raise HTTPException(status_code=400, detail="Text cannot be empty")
|
34 |
+
result = sentiment_model(text[:512])[0]
|
35 |
+
return {
|
36 |
+
"label": result["label"],
|
37 |
+
"score": round(result["score"] * 100, 2)
|
38 |
+
}
|
39 |
+
|
40 |
+
@app.post("/ner")
|
41 |
+
def analyze_ner(req: TextRequest):
|
42 |
+
if not ner_model:
|
43 |
+
raise HTTPException(status_code=503, detail="NER model not available")
|
44 |
+
text = req.text
|
45 |
+
if not text:
|
46 |
+
raise HTTPException(status_code=400, detail="Text cannot be empty")
|
47 |
+
entities = ner_model(text[:512])
|
48 |
+
# Filter relevant entities (ORG, PERSON, MISC, PRODUCT, GPE)
|
49 |
+
relevant = [e['word'] for e in entities if e['entity_group'] in ['ORG', 'PERSON', 'MISC', 'PRODUCT', 'GPE']]
|
50 |
+
# Remove duplicates and limit to 5
|
51 |
+
unique_entities = list(dict.fromkeys(relevant))[:5]
|
52 |
+
return {"entities": unique_entities}
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi
|
2 |
+
uvicorn[standard]
|
3 |
+
transformers
|
4 |
+
torch
|