import os import gradio as gr from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns import pandas as pd from apscheduler.schedulers.background import BackgroundScheduler from huggingface_hub import snapshot_download from src.about import ( CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, EVALUATION_QUEUE_TEXT, INTRODUCTION_TEXT, CLS_BENCHMARKS_TEXT, TITLE, ) from src.display.css_html_js import custom_css from src.display.utils import ( BENCHMARK_COLS, COLS, EVAL_COLS, EVAL_TYPES, AutoEvalColumn, ModelType, fields, WeightType, Precision ) from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN from src.populate import get_leaderboard_df from src.submission.submit import process_submission def restart_space(): API.restart_space(repo_id=REPO_ID) ### Space initialisation try: print(EVAL_REQUESTS_PATH) snapshot_download( repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN, ignore_patterns=["*.csv"] ) except Exception: restart_space() try: print(EVAL_RESULTS_PATH) snapshot_download( repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN, ignore_patterns=["*.csv"] ) except Exception: restart_space() os.makedirs(EVAL_REQUESTS_PATH, exist_ok=True) os.makedirs(EVAL_RESULTS_PATH, exist_ok=True) LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS) def init_leaderboard(dataframe): if dataframe is None or dataframe.empty: print("Initializing empty leaderboard") return Leaderboard( value=pd.DataFrame(columns=[c.name for c in fields(AutoEvalColumn)]), search_columns=['Model Name'], interactive=True ) else: print("Initializing leaderboard with data") return Leaderboard( value=dataframe, datatype=[c.type for c in fields(AutoEvalColumn)], search_columns=['Model Name'], hide_columns=['Student ID', 'eval_name'], interactive=False ) demo = gr.Blocks(css=custom_css) with demo: gr.HTML(TITLE) gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") with gr.Tabs(elem_classes="tab-buttons") as tabs: with gr.TabItem("🏅 Performance Benchmark", elem_id="benchmark-tab-table", id=0): leaderboard = init_leaderboard(LEADERBOARD_DF) with gr.TabItem("📝 About", elem_id="benchmark-tab-table", id=2): gr.Markdown(CLS_BENCHMARKS_TEXT, elem_classes="markdown-text") with gr.TabItem("🚀 Submit here! ", elem_id="benchmark-tab-table", id=3): with gr.Column(): gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") gr.Markdown("## Submit Your Results") with gr.Row(): student_id = gr.Textbox(label="Student ID") model_name = gr.Textbox(label="Model Name", value='pixelCNN++') csv_upload = gr.UploadButton( label="Upload Predictions CSV", file_types=[".csv"], file_count="single" ) submit_button = gr.Button("Submit Results") submission_result = gr.Markdown() submit_button.click( process_submission, inputs=[student_id, model_name, csv_upload], outputs=submission_result ) scheduler = BackgroundScheduler() scheduler.add_job(restart_space, "interval", seconds=1800) scheduler.start() demo.queue(default_concurrency_limit=40).launch()