Spaces:
Sleeping
Sleeping
| import spaces | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| import torch | |
| import gradio as gr | |
| # ZeroGPU 环境会自动管理 GPU 分配,因此我们不设置 CUDA_VISIBLE_DEVICES | |
| USE_CUDA = torch.cuda.is_available() | |
| device = torch.device("cuda:0" if USE_CUDA else "cpu") | |
| # 初始化 | |
| peft_model_id = "CMLM/ZhongJing-2-1_8b" | |
| base_model_id = "Qwen/Qwen1.5-1.8B-Chat" | |
| model = AutoModelForCausalLM.from_pretrained(base_model_id, device_map="auto") | |
| model.load_adapter(peft_model_id) | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| "CMLM/ZhongJing-2-1_8b", | |
| padding_side="right", | |
| trust_remote_code=True, | |
| pad_token='' | |
| ) | |
| def single_turn_chat(question): | |
| try: | |
| prompt = f"Question: {question}" | |
| messages = [ | |
| {"role": "system", "content": "You are a helpful TCM medical assistant named 仲景中医大语言模型, created by 医哲未来 of Fudan University."}, | |
| {"role": "user", "content": prompt} | |
| ] | |
| input = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| model_inputs = tokenizer([input], return_tensors="pt").to(device) | |
| print("Debug: Model inputs prepared successfully.") | |
| generated_ids = model.generate(model_inputs.input_ids, max_new_tokens=512) | |
| print("Debug: Model generation completed successfully.") | |
| generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)] | |
| response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
| return response | |
| except Exception as e: | |
| print(f"Error during model invocation: {str(e)}") | |
| raise | |
| def multi_turn_chat(question, chat_history=None): | |
| if not isinstance(question, str): | |
| raise ValueError("The question must be a string.") | |
| if chat_history is None or chat_history == []: | |
| chat_history = [{"role": "system", "content": "You are a helpful TCM medical assistant named 仲景中医大语言模型, created by 医哲未来 of Fudan University."}] | |
| chat_history.append({"role": "user", "content": question}) | |
| inputs = tokenizer.apply_chat_template(chat_history, tokenize=False, add_generation_prompt=True) | |
| model_inputs = tokenizer([inputs], return_tensors="pt").to(device) | |
| outputs = model.generate(model_inputs.input_ids, max_new_tokens=512) | |
| generated_ids = outputs[:, model_inputs.input_ids.shape[-1]:] | |
| response = tokenizer.decode(generated_ids[0], skip_special_tokens=True) | |
| chat_history.append({"role": "assistant", "content": response}) | |
| return chat_history | |
| # 单轮界面 | |
| single_turn_interface = gr.Interface( | |
| fn=single_turn_chat, | |
| inputs=["text"], | |
| outputs="text", | |
| title="仲景GPT-V2-1.8B 单轮对话", | |
| description="Unlocking the Wisdom of Traditional Chinese Medicine with AI." | |
| ) | |
| # 多轮界面配置与之前保持一致 | |