Spaces:
Running
Running
# --- | |
# jupyter: | |
# jupytext: | |
# text_representation: | |
# extension: .py | |
# format_name: light | |
# format_version: '1.5' | |
# jupytext_version: 1.15.2 | |
# kernelspec: | |
# display_name: Python 3 | |
# language: python | |
# name: python3 | |
# --- | |
# # Gradio Example <a name="XAITK-Saliency-Gradio-Example"></a> | |
# This notebook makes use of the saliency generation example found in the base ``xaitk-saliency`` repo [here](https://github.com/XAITK/xaitk-saliency/blob/master/examples/OcclusionSaliency.ipynb), and explores integrating ``xaitk-saliency`` with ``Gradio`` to create an interactive interface for computing saliency maps. | |
# | |
# ## Test Image <a name="Test-Image-Gradio"></a> | |
# + | |
import os | |
import PIL.Image | |
import matplotlib.pyplot as plt # type: ignore | |
import urllib | |
import numpy as np | |
import gradio as gr | |
from gradio import ( # type: ignore | |
AnnotatedImage, Button, Column, Image, Label, # type: ignore | |
Number, Plot, Row, TabItem, Tab, Tabs # type: ignore | |
) | |
from gradio import components as gr_components # type: ignore | |
# + | |
# State variables for Image Classification | |
from gr_component_state import ( # type: ignore | |
img_cls_model_name, img_cls_saliency_algo_name, window_size_state, stride_state, debiased_state, | |
) | |
# State functions for Image Classification | |
from gr_component_state import ( # type: ignore | |
select_img_cls_model, select_img_cls_saliency_algo, enter_window_size, enter_stride, check_debiased | |
) | |
# State variables for Object Detection | |
from gr_component_state import ( # type: ignore | |
obj_det_model_name, obj_det_saliency_algo_name, occlusion_grid_state | |
) | |
# State functions for Object Detection | |
from gr_component_state import ( # type: ignore | |
select_obj_det_model, select_obj_det_saliency_algo, enter_occlusion_grid_size | |
) | |
# Common state variables | |
from gr_component_state import ( # type: ignore | |
threads_state, num_masks_state, spatial_res_state, p1_state, seed_state | |
) | |
# Common state functions | |
from gr_component_state import ( # type: ignore | |
select_threads, enter_num_masks, enter_spatial_res, select_p1, enter_seed | |
) | |
import torch | |
import torchvision.transforms as transforms | |
import torchvision.models as models | |
from smqtk_detection.impls.detect_image_objects.resnet_frcnn import ResNetFRCNN | |
from xaitk_saliency.impls.gen_image_classifier_blackbox_sal.slidingwindow import SlidingWindowStack | |
from xaitk_saliency.impls.gen_image_classifier_blackbox_sal.rise import RISEStack | |
from xaitk_saliency.impls.gen_object_detector_blackbox_sal.drise import RandomGridStack, DRISEStack | |
import torch.nn.functional | |
from smqtk_classifier.interfaces.classify_image import ClassifyImage | |
import numpy as np | |
from gradio import ( # type: ignore | |
Checkbox, Dropdown, SelectData, Slider, Textbox # type: ignore | |
) | |
from gradio import processing_utils as gr_processing_utils # type: ignore | |
from xaitk_saliency.interfaces.gen_object_detector_blackbox_sal import GenerateObjectDetectorBlackboxSaliency | |
from smqtk_detection.interfaces.detect_image_objects import DetectImageObjects | |
# Use JPEG format for inline visualizations here. | |
# %config InlineBackend.figure_format = "jpeg" | |
os.makedirs('data', exist_ok=True) | |
test_image_filename = 'data/catdog.jpg' | |
urllib.request.urlretrieve('https://farm1.staticflickr.com/74/202734059_fcce636dcd_z.jpg', test_image_filename) | |
plt.figure(figsize=(12, 8)) | |
plt.axis('off') | |
_ = plt.imshow(PIL.Image.open(test_image_filename)) | |
# - | |
# ## Initialize state variables for Gradio components <a name="Global-State-Gradio"></a> | |
# Gradio expects either a list or dict format to maintain state variables based on the use case. The cell below initializes the state variables from the ``gr_component_state.py`` file for the various components in our gradio demo. | |
# ## Helper Functions <a name="Helper-Functions-Gradio"></a> | |
# The functions defined in the cell below are used to set up the model, saliency algorithm, class labels and image transforms needed for the demo. | |
CUDA_AVAILABLE = torch.cuda.is_available() | |
model_input_size = (224, 224) | |
model_mean = [0.485, 0.456, 0.406] | |
model_loader = transforms.Compose([ | |
transforms.ToPILImage(), | |
transforms.Resize(model_input_size), | |
transforms.ToTensor(), | |
transforms.Normalize( | |
mean=model_mean, | |
std=[0.229, 0.224, 0.225] | |
), | |
]) | |
def get_sal_labels(classes_file, custom_categories_list=None): | |
if not os.path.isfile(classes_file): | |
url = "https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt" | |
_ = urllib.request.urlretrieve(url, classes_file) | |
f = open(classes_file, "r") | |
categories = [s.strip() for s in f.readlines()] | |
if not custom_categories_list == None: | |
sal_class_labels = custom_categories_list | |
else: | |
sal_class_labels = categories | |
sal_class_idxs = [categories.index(lbl) for lbl in sal_class_labels] | |
return sal_class_labels, sal_class_idxs | |
def get_det_sal_labels(classes_file, custom_categories_list=None): | |
if not os.path.isfile(classes_file): | |
url = "https://raw.githubusercontent.com/matlab-deep-learning/Object-Detection-Using-Pretrained-YOLO-v2/main/%2Bhelper/coco-classes.txt" | |
_ = urllib.request.urlretrieve(url, classes_file) | |
f = open(classes_file, "r") | |
categories = [s.strip() for s in f.readlines()] | |
if not custom_categories_list == None: | |
sal_obj_labels = custom_categories_list | |
else: | |
sal_obj_labels = categories | |
sal_obj_idxs = [categories.index(lbl) for lbl in sal_obj_labels] | |
return sal_obj_labels, sal_obj_idxs | |
def get_model(model_choice): | |
if model_choice == "ResNet-18": | |
model = models.resnet18(pretrained=True) | |
else: | |
model = models.resnet50(pretrained=True) | |
model = model.eval() | |
if CUDA_AVAILABLE: | |
model = model.cuda() | |
return model | |
def get_detection_model(model_choice): | |
if model_choice == "Faster-RCNN": | |
blackbox_detector = ResNetFRCNN( | |
box_thresh=0.05, | |
img_batch_size=1, | |
use_cuda=True | |
) | |
else: | |
raise Exception("Unknown Input") | |
return blackbox_detector | |
def get_saliency_algo(sal_choice): | |
if sal_choice == "RISE": | |
gen_sal = RISEStack( | |
n=num_masks_state[-1], | |
s=spatial_res_state[-1], | |
p1=p1_state[-1], | |
seed=seed_state[-1], | |
threads=threads_state[-1], | |
debiased=debiased_state[-1] | |
) | |
elif sal_choice == "SlidingWindowStack": | |
gen_sal = SlidingWindowStack( | |
window_size=eval(window_size_state[-1]), | |
stride=eval(stride_state[-1]), | |
threads=threads_state[-1] | |
) | |
else: | |
raise Exception("Unknown Input") | |
return gen_sal | |
def get_detection_saliency_algo(sal_choice): | |
if sal_choice == "RandomGridStack": | |
gen_sal = RandomGridStack( | |
n=num_masks_state[-1], | |
s=eval(occlusion_grid_state[-1]), | |
p1=p1_state[-1], | |
threads=threads_state[-1], | |
seed=seed_state[-1], | |
) | |
elif sal_choice == "DRISE": | |
gen_sal = DRISEStack( | |
n=num_masks_state[-1], | |
s=spatial_res_state[-1], | |
p1=p1_state[-1], | |
seed=seed_state[-1], | |
threads=threads_state[-1] | |
) | |
else: | |
raise Exception("Unknown Input") | |
return gen_sal | |
data_path = "./data" | |
if not os.path.exists(data_path): | |
os.makedirs(data_path) | |
# Setup imagenet classes and ClassifyImage for generating classification saliency | |
classes_file = os.path.join(data_path,"imagenet_classes.txt") | |
sal_class_labels, sal_class_idxs = get_sal_labels(classes_file) | |
class TorchResnet (ClassifyImage): | |
modified_class_labels = [] | |
def get_labels(self): | |
return self.modified_class_labels | |
def set_labels(self, class_labels): | |
self.modified_class_labels = [lbl for lbl in class_labels] | |
def classify_images(self, image_iter): | |
# Input may either be an NDaray, or some arbitrary iterable of NDarray images. | |
model = get_model(img_cls_model_name[-1]) | |
for img in image_iter: | |
image_tensor = model_loader(img).unsqueeze(0) | |
if CUDA_AVAILABLE: | |
image_tensor = image_tensor.cuda() | |
feature_vec = model(image_tensor) | |
# Converting feature extractor output to probabilities. | |
class_conf = torch.nn.functional.softmax(feature_vec, dim=1).cpu().detach().numpy().squeeze() | |
# Only return the confidences for the focus classes | |
yield dict(zip(sal_class_labels, class_conf[sal_class_idxs])) | |
def get_config(self): | |
# Required by a parent class. | |
return {} | |
blackbox_classifier, blackbox_fill = TorchResnet(), np.uint8(np.asarray(model_mean) * 255).tolist() | |
# Setup COCO object classes for generating detection saliency | |
obj_classes_file = os.path.join(data_path,"coco_classes.txt") | |
sal_obj_labels, sal_obj_idxs = get_det_sal_labels(obj_classes_file) | |
# Modify textbox parameters based on chosen saliency algorithm | |
def show_textbox_parameters(choice): | |
if choice == 'RISE': | |
return Textbox.update(visible=False), Textbox.update(visible=False), Textbox.update(visible=True), Textbox.update(visible=True), Textbox.update(visible=True) | |
elif choice == 'SlidingWindowStack': | |
return Textbox.update(visible=True), Textbox.update(visible=True), Textbox.update(visible=False), Textbox.update(visible=False), Textbox.update(visible=False) | |
elif choice == "RandomGridStack": | |
return Textbox.update(visible=True), Textbox.update(visible=False), Textbox.update(visible=True), Textbox.update(visible=True) | |
elif choice == "DRISE": | |
return Textbox.update(visible=True), Textbox.update(visible=True), Textbox.update(visible=True), Textbox.update(visible=False) | |
else: | |
raise Exception("Unknown Input") | |
# Modify slider parameters based on chosen saliency algorithm | |
def show_slider_parameters(choice): | |
if choice == 'RISE' or choice == 'RandomGridStack' or choice == 'DRISE': | |
return Slider.update(visible=True), Slider.update(visible=True) | |
elif choice == 'SlidingWindowStack': | |
return Slider.update(visible=True), Slider.update(visible=False) | |
else: | |
raise Exception("Unknown Input") | |
# Modify checkbox parameters based on chosen saliency algorithm | |
def show_debiased_checkbox(choice): | |
if choice == 'RISE': | |
return Checkbox.update(visible=True) | |
elif choice == 'SlidingWindowStack' or choice == 'RandomGridStack' or choice == 'DRISE': | |
return Checkbox.update(visible=False) | |
else: | |
raise Exception("Unknown Input") | |
# Function that is called after clicking the "Classify" button in the demo | |
def predict(x,top_n_classes): | |
image_tensor = model_loader(x).unsqueeze(0) | |
if CUDA_AVAILABLE: | |
image_tensor = image_tensor.cuda() | |
model = get_model(img_cls_model_name[-1]) | |
feature_vec = model(image_tensor) | |
class_conf = torch.nn.functional.softmax(feature_vec, dim=1).cpu().detach().numpy().squeeze() | |
labels = list(zip(sal_class_labels, class_conf[sal_class_idxs].tolist())) | |
final_labels = dict(sorted(labels, key=lambda t: t[1],reverse=True)[:top_n_classes]) | |
return final_labels, Dropdown.update(choices=list(final_labels)) | |
# Interpretation function for image classification that implements the selected saliency algorithm and generates the class-wise saliency map visualizations | |
def interpretation_function(image: np.ndarray, | |
labels: dict, | |
nth_class: str, | |
img_alpha, | |
sal_alpha, | |
sal_range_min, | |
sal_range_max): | |
sal_generator = get_saliency_algo(img_cls_saliency_algo_name[-1]) | |
sal_generator.fill = blackbox_fill | |
labels_list = [i['label'] for i in labels['confidences']] | |
blackbox_classifier.set_labels(labels_list) | |
sal_maps = sal_generator(image, blackbox_classifier) | |
nth_class_index = blackbox_classifier.get_labels().index(nth_class) | |
scores = sal_maps[nth_class_index,:,:] | |
fig = visualize_saliency_plot(image, | |
sal_maps[nth_class_index,:,:], | |
img_alpha, | |
sal_alpha, | |
sal_range_min, | |
sal_range_max) | |
scores = np.clip(scores, sal_range_min, sal_range_max) | |
return {"original": gr_processing_utils.encode_array_to_base64(image), | |
"interpretation": scores.tolist()}, fig | |
def visualize_saliency_plot(image: np.ndarray, | |
class_sal_map: np.ndarray, | |
img_alpha, | |
sal_alpha, | |
sal_range_min, | |
sal_range_max): | |
colorbar_kwargs = { | |
"fraction": 0.046*(image.shape[0]/image.shape[1]), | |
"pad": 0.04, | |
} | |
fig = plt.figure() | |
plt.imshow(image, alpha=img_alpha) | |
plt.imshow( | |
np.clip(class_sal_map, sal_range_min, sal_range_max), | |
cmap='jet', alpha=sal_alpha | |
) | |
plt.clim(sal_range_min, sal_range_max) | |
plt.colorbar(**colorbar_kwargs) | |
plt.title(f"Saliency Map") | |
plt.axis('off') | |
plt.close(fig) | |
return fig | |
# Generate top-n object detect predictions on the input image | |
def run_detect(input_img: np.ndarray, num_detections: int): | |
detect_model = get_detection_model(obj_det_model_name[-1]) | |
preds = list(list(detect_model([input_img]))[0]) | |
n_preds = len(preds) | |
n_classes = len(preds[0][1]) | |
bboxes = np.empty((n_preds, 4), dtype=np.float32) | |
scores = np.empty((n_preds, n_classes), dtype=np.float32) | |
max_scores_index = np.empty((n_preds, 1), dtype=int) | |
labels = None | |
final_bbox = [] | |
final_label = [] | |
for i, (bbox, score_dict) in enumerate(preds): | |
bboxes[i] = (*bbox.min_vertex, *bbox.max_vertex) | |
score_list = list(score_dict.values()) | |
scores[i] = score_list | |
max_scores_index[i] = score_list.index(max(score_list)) | |
if labels is None: | |
labels = list(score_dict.keys()) | |
label_name = str(labels[int(max_scores_index[i,0])]) | |
conf_score = str(round(score_list[int(max_scores_index[i,0])],4)) | |
label_with_score = str(i) + " : "+ label_name + " - " + conf_score | |
final_label.append(label_with_score) | |
bboxes_list = bboxes[:,:].astype(int).tolist() | |
return (input_img, list(zip([f for f in bboxes_list], [l for l in final_label]))[:num_detections]), Dropdown.update(choices=[l for l in final_label][:num_detections]) | |
# Run saliency algorithm on the object detect predictions and generate corresponding visualizations | |
def run_detect_saliency(input_img: np.ndarray, | |
num_predictions, | |
obj_label, | |
img_alpha, | |
sal_alpha, | |
sal_range_min, | |
sal_range_max): | |
detect_model = get_detection_model(obj_det_model_name[-1]) | |
img_preds = list(list(detect_model([input_img]))[0]) | |
ref_preds = img_preds[:int(num_predictions)] | |
ref_bboxes = [] | |
ref_scores = [] | |
for det in ref_preds: | |
bbox = det[0] | |
ref_bboxes.append([ | |
*bbox.min_vertex, | |
*bbox.max_vertex, | |
]) | |
score_dict = det[1] | |
ref_scores.append(list(score_dict.values())) | |
ref_bboxes = np.array(ref_bboxes) | |
ref_scores = np.array(ref_scores) | |
print(f"Ref bboxes: {ref_bboxes.shape}") | |
print(f"Ref scores: {ref_scores.shape}") | |
sal_generator = get_detection_saliency_algo(obj_det_saliency_algo_name[-1]) | |
sal_generator.fill = blackbox_fill | |
sal_maps = gen_det_saliency(input_img, detect_model, sal_generator,ref_bboxes,ref_scores) | |
print(f"Saliency maps: {sal_maps.shape}") | |
nth_class_index = int(obj_label.split(' : ')[0]) | |
scores = sal_maps[nth_class_index,:,:] | |
fig = visualize_saliency_plot(input_img, | |
sal_maps[nth_class_index,:,:], | |
img_alpha, | |
sal_alpha, | |
sal_range_min, | |
sal_range_max) | |
scores = np.clip(scores, sal_range_min, sal_range_max) | |
return fig | |
def gen_det_saliency(input_img: np.ndarray, | |
blackbox_detector: DetectImageObjects, | |
sal_map_generator: GenerateObjectDetectorBlackboxSaliency, | |
ref_bboxes: np.ndarray, | |
ref_scores: np.ndarray | |
): | |
sal_maps = sal_map_generator.generate( | |
input_img, | |
ref_bboxes, | |
ref_scores, | |
blackbox_detector, | |
) | |
return sal_maps | |
# Event handler that populates the dropdown list of classes based on the Label/AnnotatedImage components' output | |
def map_labels(evt: SelectData): | |
return str(evt.value) | |
with gr.Blocks() as demo: | |
with Tab("Image Classification"): | |
with Row(): | |
with Column(scale=0.5): | |
drop_list = Dropdown(value=img_cls_model_name[-1],choices=["ResNet-18","ResNet-50"],label="Choose Model",interactive="True") | |
with Column(scale=0.5): | |
drop_list_sal = Dropdown(value=img_cls_saliency_algo_name[-1],choices=["SlidingWindowStack","RISE"],label="Choose Saliency Algorithm",interactive="True") | |
with Row(): | |
with Column(scale=0.33): | |
window_size = Textbox(value=window_size_state[-1],label="Tuple of window size values (Press Enter to submit the input)",interactive=True,visible=False) | |
masks = Number(value=num_masks_state[-1],label="Number of Random Masks (Press Enter to submit the input)",interactive=True,visible=False,precision=0) | |
with Column(scale=0.33): | |
stride = Textbox(value=stride_state[-1],label="Tuple of stride values (Press Enter to submit the input)" ,interactive=True,visible=False) | |
spatial_res = Number(value=spatial_res_state[-1],label="Spatial Resolution of Masking Grid (Press Enter to submit the input)" ,interactive=True,visible=False,precision=0) | |
with Column(scale=0.33): | |
threads = Slider(value=threads_state[-1],label="Threads",interactive=True,visible=False) | |
with Row(): | |
with Column(scale=0.33): | |
seed = Number(value=seed_state[-1],label="Seed (Press Enter to submit the input)",interactive=True,visible=False,precision=0) | |
with Column(scale=0.33): | |
p1 = Slider(value=p1_state[-1],label="P1",interactive=True,visible=False, minimum=0,maximum=1,step=0.1) | |
with Column(scale=0.33): | |
debiased = Checkbox(value=debiased_state[-1],label="Debiased", interactive=True, visible=False) | |
with Row(): | |
with Column(): | |
input_img = Image(label="Saliency Map Generation", shape=(640, 480)) | |
num_classes = Slider(value=2,label="Top-N class labels", interactive=True,visible=True) | |
classify = Button("Classify") | |
with Column(): | |
class_label = Label(label="Predicted Class") | |
with Column(): | |
with Row(): | |
class_name = Dropdown(label="Class to compute saliency",interactive=True,visible=True) | |
with Row(): | |
img_alpha = Slider(value=0.7,label="Image Opacity",interactive=True,visible=True,minimum=0,maximum=1,step=0.1) | |
sal_alpha = Slider(value=0.3,label="Saliency Map Opacity",interactive=True,visible=True,minimum=0,maximum=1,step=0.1) | |
with Row(): | |
min_sal_range = Slider(value=0,label="Minimum Saliency Value",interactive=True,visible=True,minimum=-1,maximum=1,step=0.05) | |
max_sal_range = Slider(value=1,label="Maximum Saliency Value",interactive=True,visible=True,minimum=-1,maximum=1,step=0.05) | |
with Row(): | |
generate_saliency = Button("Generate Saliency") | |
with Column(): | |
with Tabs(): | |
with TabItem("Display interpretation with plot"): | |
interpretation_plot = Plot() | |
with TabItem("Display interpretation with built-in component"): | |
interpretation = gr_components.Interpretation(input_img) | |
with Tab("Object Detection"): | |
with Row(): | |
with Column(scale=0.5): | |
drop_list_detect_model = Dropdown(value=obj_det_model_name[-1],choices=["Faster-RCNN"],label="Choose Model",interactive="True") | |
with Column(scale=0.5): | |
drop_list_detect_sal = Dropdown(value=obj_det_saliency_algo_name[-1],choices=["RandomGridStack","DRISE"],label="Choose Saliency Algorithm",interactive="True") | |
with Row(): | |
with Column(scale=0.33): | |
masks_detect = Number(value=num_masks_state[-1],label="Number of Random Masks (Press Enter to submit the input)",interactive=True,visible=False,precision=0) | |
occlusion_grid_size = Textbox(value=occlusion_grid_state[-1],label="Tuple of occlusion grid size values (Press Enter to submit the input)",interactive=True,visible=False) | |
spatial_res_detect = Number(value=spatial_res_state[-1],label="Spatial Resolution of Masking Grid (Press Enter to submit the input)" ,interactive=True,visible=False,precision=0) | |
with Column(scale=0.33): | |
seed_detect = Number(value=seed_state[-1],label="Seed (Press Enter to submit the input)",interactive=True,visible=False,precision=0) | |
p1_detect = Slider(value=p1_state[-1],label="P1",interactive=True,visible=False, minimum=0,maximum=1,step=0.1) | |
with Column(scale=0.33): | |
threads_detect = Slider(value=threads_state[-1],label="Threads",interactive=True,visible=False) | |
with Row(): | |
with Column(): | |
input_img_detect = Image(label="Saliency Map Generation", shape=(640, 480)) | |
num_detections = Slider(value=2,label="Top-N detections", interactive=True,visible=True) | |
detection = Button("Run Detection Algorithm") | |
with Column(): | |
detect_label = AnnotatedImage(label="Detections") | |
with Column(): | |
with Row(): | |
class_name_det = Dropdown(label="Detection to compute saliency",interactive=True,visible=True) | |
with Row(): | |
img_alpha_det = Slider(value=0.7,label="Image Opacity",interactive=True,visible=True,minimum=0,maximum=1,step=0.1) | |
sal_alpha_det = Slider(value=0.3,label="Saliency Map Opacity",interactive=True,visible=True,minimum=0,maximum=1,step=0.1) | |
with Row(): | |
min_sal_range_det = Slider(value=0.95,label="Minimum Saliency Value",interactive=True,visible=True,minimum=0.80,maximum=1,step=0.05) | |
max_sal_range_det = Slider(value=1,label="Maximum Saliency Value",interactive=True,visible=True,minimum=0.80,maximum=1,step=0.05) | |
with Row(): | |
generate_det_saliency = Button("Generate Saliency") | |
with Column(): | |
with Tabs(): | |
with TabItem("Display saliency map plot"): | |
det_saliency_plot = Plot() | |
# Image Classification dropdown list event listeners | |
drop_list.select(select_img_cls_model,drop_list,drop_list) | |
drop_list_sal.select(select_img_cls_saliency_algo,drop_list_sal,drop_list_sal) | |
drop_list_sal.change(show_textbox_parameters,drop_list_sal,[window_size,stride,masks,spatial_res,seed]) | |
drop_list_sal.change(show_slider_parameters,drop_list_sal,[threads,p1]) | |
drop_list_sal.change(show_debiased_checkbox,drop_list_sal,debiased) | |
# Image Classification textbox, slider and checkbox event listeners | |
window_size.submit(enter_window_size,window_size,window_size) | |
masks.submit(enter_num_masks,masks,masks) | |
stride.submit(enter_stride, stride, stride) | |
spatial_res.submit(enter_spatial_res, spatial_res, spatial_res) | |
seed.submit(enter_seed, seed, seed) | |
threads.change(select_threads, threads, threads) | |
p1.change(select_p1, p1, p1) | |
debiased.change(check_debiased,debiased,debiased) | |
# Image Classification prediction and saliency generation event listeners | |
classify.click(predict, [input_img, num_classes], [class_label,class_name]) | |
class_label.select(map_labels,None,class_name) | |
generate_saliency.click(interpretation_function, [input_img, class_label, class_name, img_alpha, sal_alpha, min_sal_range, max_sal_range], [interpretation,interpretation_plot]) | |
# Object Detection dropdown list event listeners | |
drop_list_detect_model.select(select_obj_det_model,drop_list_detect_model,drop_list_detect_model) | |
drop_list_detect_sal.select(select_obj_det_saliency_algo,drop_list_detect_sal,drop_list_detect_sal) | |
drop_list_detect_sal.change(show_slider_parameters,drop_list_detect_sal,[threads_detect,p1_detect]) | |
drop_list_detect_sal.change(show_textbox_parameters,drop_list_detect_sal,[masks_detect,spatial_res_detect,seed_detect,occlusion_grid_size]) | |
# Object detection textbox and slider event listeners | |
masks_detect.submit(enter_num_masks,masks_detect,masks_detect) | |
occlusion_grid_size.submit(enter_occlusion_grid_size,occlusion_grid_size,occlusion_grid_size) | |
spatial_res_detect.submit(enter_spatial_res, spatial_res_detect, spatial_res_detect) | |
seed_detect.submit(enter_seed, seed_detect, seed_detect) | |
threads_detect.change(select_threads, threads_detect, threads_detect) | |
p1_detect.change(select_p1, p1_detect, p1_detect) | |
# Object detection prediction, class selection and saliency generation event listeners | |
detection.click(run_detect, [input_img_detect, num_detections], [detect_label,class_name_det]) | |
detect_label.select(map_labels, None, class_name_det) | |
generate_det_saliency.click(run_detect_saliency,[input_img_detect, num_detections, class_name_det, img_alpha_det, sal_alpha_det, min_sal_range_det, max_sal_range_det],det_saliency_plot) | |
demo.launch() |