Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,100 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import os
|
| 3 |
+
from datetime import datetime
|
| 4 |
+
from huggingface_hub import hf_hub_download
|
| 5 |
|
| 6 |
+
title = "RWKV-4 14B fp16 ctx4096"
|
| 7 |
+
desc = '''Links:
|
| 8 |
+
<a href='https://github.com/BlinkDL/ChatRWKV' target="_blank" style="margin:0 1em">ChatRWKV</a>
|
| 9 |
+
<a href='https://github.com/BlinkDL/RWKV-LM' target="_blank" style="margin:0 1em">RWKV-LM</a>
|
| 10 |
+
<a href="https://pypi.org/project/rwkv/" target="_blank" style="margin:0 1em">RWKV pip package</a>
|
| 11 |
+
'''
|
| 12 |
|
| 13 |
+
os.environ["RWKV_JIT_ON"] = '1'
|
| 14 |
+
os.environ["RWKV_CUDA_ON"] = '1' # if '1' then use CUDA kernel for seq mode (much faster)
|
| 15 |
+
|
| 16 |
+
from rwkv.model import RWKV
|
| 17 |
+
model_path = hf_hub_download(repo_id="BlinkDL/rwkv-4-pile-169m", filename="RWKV-4-Pile-169M-20220807-8023.pth")
|
| 18 |
+
model = RWKV(model=model_path, strategy='cuda fp16')
|
| 19 |
+
from rwkv.utils import PIPELINE, PIPELINE_ARGS
|
| 20 |
+
pipeline = PIPELINE(model, "20B_tokenizer.json")
|
| 21 |
+
|
| 22 |
+
def infer(
|
| 23 |
+
ctx,
|
| 24 |
+
token_count=10,
|
| 25 |
+
temperature=1.0,
|
| 26 |
+
top_p=0.85,
|
| 27 |
+
presencePenalty = 0.1,
|
| 28 |
+
countPenalty = 0.1,
|
| 29 |
+
):
|
| 30 |
+
args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p),
|
| 31 |
+
alpha_frequency = countPenalty,
|
| 32 |
+
alpha_presence = presencePenalty,
|
| 33 |
+
token_ban = [0], # ban the generation of some tokens
|
| 34 |
+
token_stop = []) # stop generation whenever you see any token here
|
| 35 |
+
|
| 36 |
+
ctx = ctx.strip(' ')
|
| 37 |
+
if ctx.endswith('\n'):
|
| 38 |
+
ctx = f'\n{ctx.strip()}\n'
|
| 39 |
+
else:
|
| 40 |
+
ctx = f'\n{ctx.strip()}'
|
| 41 |
+
|
| 42 |
+
all_tokens = []
|
| 43 |
+
out_last = 0
|
| 44 |
+
out_str = ''
|
| 45 |
+
occurrence = {}
|
| 46 |
+
state = None
|
| 47 |
+
for i in range(int(token_count)):
|
| 48 |
+
out, state = model.forward(pipeline.encode(ctx) if i == 0 else [token], state)
|
| 49 |
+
for n in args.token_ban:
|
| 50 |
+
out[n] = -float('inf')
|
| 51 |
+
for n in occurrence:
|
| 52 |
+
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
|
| 53 |
+
|
| 54 |
+
token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
|
| 55 |
+
if token in args.token_stop:
|
| 56 |
+
break
|
| 57 |
+
all_tokens += [token]
|
| 58 |
+
if token not in occurrence:
|
| 59 |
+
occurrence[token] = 1
|
| 60 |
+
else:
|
| 61 |
+
occurrence[token] += 1
|
| 62 |
+
|
| 63 |
+
tmp = pipeline.decode(all_tokens[out_last:])
|
| 64 |
+
if '\ufffd' not in tmp:
|
| 65 |
+
out_str += tmp
|
| 66 |
+
yield out_str.strip()
|
| 67 |
+
out_last = i + 1
|
| 68 |
+
yield out_str.strip()
|
| 69 |
+
|
| 70 |
+
examples = [
|
| 71 |
+
["Ask Expert\n\nQuestion:\nWhat are some good plans for world peace?\n\nExpert Full Answer:\n", 100, 1.0, 0.85, 0.1, 0.1],
|
| 72 |
+
["Q & A\n\nQuestion:\nWhy is the sky blue?\n\nDetailed Expert Answer:\n", 100, 1.0, 0.85, 0.1, 0.1],
|
| 73 |
+
["Expert Questions & Helpful Answers\nAsk Research Experts\nQuestion:\nCan you write a short story about an elf maiden named Julia that meets a warrior named Rallio and they go on an adventure together?\n\nFull Answer:\n", 100, 1.0, 0.85, 0.1, 0.1],
|
| 74 |
+
]
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
iface = gr.Interface(
|
| 78 |
+
fn=infer,
|
| 79 |
+
description=f'''{desc}''',
|
| 80 |
+
allow_flagging="never",
|
| 81 |
+
inputs=[
|
| 82 |
+
gr.Textbox(lines=20, label="Prompt"), # prompt
|
| 83 |
+
gr.Slider(10, 200, step=10, value=100), # token_count
|
| 84 |
+
gr.Slider(0.2, 2.0, step=0.1, value=1.0), # temperature
|
| 85 |
+
gr.Slider(0.0, 1.0, step=0.05, value=0.85), # top_p
|
| 86 |
+
gr.Slider(0.0, 1.0, step=0.1, value=0.1), # presencePenalty
|
| 87 |
+
gr.Slider(0.0, 1.0, step=0.1, value=0.1), # countPenalty
|
| 88 |
+
],
|
| 89 |
+
outputs=gr.Textbox(label="Generated Output", lines=35),
|
| 90 |
+
examples=examples,
|
| 91 |
+
cache_examples=False,
|
| 92 |
+
).queue()
|
| 93 |
+
|
| 94 |
+
demo = gr.TabbedInterface(
|
| 95 |
+
[iface], ["Generative"],
|
| 96 |
+
title=title,
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
demo.queue()
|
| 100 |
+
demo.launch(share=False)
|