Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -41,11 +41,23 @@ pipe.to("cuda")
|
|
41 |
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config, timestep_spacing ="trailing")
|
42 |
|
43 |
with gr.Blocks() as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
with gr.Column():
|
45 |
with gr.Row():
|
46 |
with gr.Column():
|
47 |
# scribble = gr.Image(source="canvas", tool="color-sketch", shape=(512, 512), height=768, width=768, type="pil")
|
48 |
-
scribble = gr.ImageEditor(type="pil", image_mode="L", crop_size=(512, 512), sources=(), brush=gr.Brush(color_mode="fixed", colors=["#
|
49 |
# scribble_out = gr.Image(height=384, width=384)
|
50 |
num_images = gr.Slider(label="Number of Images", minimum=1, maximum=8, step=1, value=4, interactive=True)
|
51 |
steps = gr.Slider(label="Inference Steps", minimum=1, maximum=8, step=1, value=1, interactive=True)
|
@@ -62,12 +74,12 @@ with gr.Blocks() as demo:
|
|
62 |
@spaces.GPU
|
63 |
def process_image(steps, prompt, controlnet_scale, eta, seed, scribble, num_images):
|
64 |
global pipe
|
65 |
-
if scribble:
|
66 |
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.float16), timer("inference"):
|
67 |
result = pipe(
|
68 |
prompt=[prompt]*num_images,
|
69 |
-
|
70 |
-
image=[scribble['composite']]*num_images,
|
71 |
generator=torch.Generator().manual_seed(int(seed)),
|
72 |
num_inference_steps=steps,
|
73 |
guidance_scale=0.,
|
|
|
41 |
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config, timestep_spacing ="trailing")
|
42 |
|
43 |
with gr.Blocks() as demo:
|
44 |
+
block.load(
|
45 |
+
None,
|
46 |
+
None,
|
47 |
+
_js="""
|
48 |
+
() => {
|
49 |
+
const params = new URLSearchParams(window.location.search);
|
50 |
+
if (!params.has('__theme')) {
|
51 |
+
params.set('__theme', 'dark');
|
52 |
+
window.location.search = params.toString();
|
53 |
+
}
|
54 |
+
}""",
|
55 |
+
)
|
56 |
with gr.Column():
|
57 |
with gr.Row():
|
58 |
with gr.Column():
|
59 |
# scribble = gr.Image(source="canvas", tool="color-sketch", shape=(512, 512), height=768, width=768, type="pil")
|
60 |
+
scribble = gr.ImageEditor(type="pil", image_mode="L", crop_size=(512, 512), sources=(), brush=gr.Brush(color_mode="fixed", colors=["#FFFFFF"]))
|
61 |
# scribble_out = gr.Image(height=384, width=384)
|
62 |
num_images = gr.Slider(label="Number of Images", minimum=1, maximum=8, step=1, value=4, interactive=True)
|
63 |
steps = gr.Slider(label="Inference Steps", minimum=1, maximum=8, step=1, value=1, interactive=True)
|
|
|
74 |
@spaces.GPU
|
75 |
def process_image(steps, prompt, controlnet_scale, eta, seed, scribble, num_images):
|
76 |
global pipe
|
77 |
+
if scribble:
|
78 |
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.float16), timer("inference"):
|
79 |
result = pipe(
|
80 |
prompt=[prompt]*num_images,
|
81 |
+
image=[ImageOps.invert(scribble['composite'])]*num_images,
|
82 |
+
# image=[scribble['composite']]*num_images,
|
83 |
generator=torch.Generator().manual_seed(int(seed)),
|
84 |
num_inference_steps=steps,
|
85 |
guidance_scale=0.,
|