Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,26 @@
|
|
| 1 |
-
import
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 3 |
+
import torch
|
| 4 |
|
| 5 |
+
# Load the model and tokenizer
|
| 6 |
+
tokenizer = AutoTokenizer.from_pretrained("AkshatSurolia/ICD-10-Code-Prediction")
|
| 7 |
+
model = AutoModelForSequenceClassification.from_pretrained("AkshatSurolia/ICD-10-Code-Prediction")
|
| 8 |
+
|
| 9 |
+
# Create a Streamlit input text box
|
| 10 |
+
input_text = st.text_input("Enter your text:")
|
| 11 |
+
|
| 12 |
+
# If input is provided
|
| 13 |
+
if input_text:
|
| 14 |
+
# Limit the input length
|
| 15 |
+
truncated_input = input_text[:512]
|
| 16 |
+
|
| 17 |
+
# Tokenize the input
|
| 18 |
+
tokens = tokenizer(truncated_input, truncation=True, padding=True, return_tensors="pt")
|
| 19 |
+
|
| 20 |
+
# Get model output
|
| 21 |
+
output = model(**tokens)
|
| 22 |
+
|
| 23 |
+
# The output of the model is a logits vector, so we take the argmax to get the predicted class index
|
| 24 |
+
predicted_class_idx = torch.argmax(output.logits, dim=-1).item()
|
| 25 |
+
|
| 26 |
+
st.write(f"Predicted class index: {predicted_class_idx}")
|