BroBro87 commited on
Commit
4cb1645
·
verified ·
1 Parent(s): 2fc5633

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -15
app.py CHANGED
@@ -2,39 +2,28 @@ import gradio as gr
2
  import google.generativeai as genai
3
  from pathlib import Path
4
  import tempfile
5
-
6
-
7
-
8
  def summarize_video(video_path):
9
  if video_path is None:
10
  return "Please upload a video file."
11
 
12
  try:
13
- # Create a temporary file to store the video
14
- with tempfile.NamedTemporaryFile(suffix=Path(video_path.name).suffix, delete=False) as tmp_file:
15
- tmp_file.write(video_path.read())
16
- video_file_path = tmp_file.name
17
-
18
  # Create the prompt
19
  prompt = "Summarize this video"
20
 
21
  # Set up the model
22
- model = genai.GenerativeModel(model_name="models/gemini-1.5-pro", api_key=os.environ['GOOGLE_API_KEY'])
23
 
24
  # Make the LLM request
25
  print("Making LLM inference request...")
26
- response = model.generate_content([prompt, video_file_path],
27
  request_options={"timeout": 2000})
28
 
29
  return response.text
30
 
31
  except Exception as e:
32
  return f"An error occurred: {str(e)}"
33
-
34
- finally:
35
- # Clean up temporary file
36
- if 'video_file_path' in locals():
37
- Path(video_file_path).unlink(missing_ok=True)
38
 
39
  # Create Gradio interface
40
  iface = gr.Interface(
 
2
  import google.generativeai as genai
3
  from pathlib import Path
4
  import tempfile
5
+ import os
 
 
6
  def summarize_video(video_path):
7
  if video_path is None:
8
  return "Please upload a video file."
9
 
10
  try:
11
+ # Since Gradio passes the path as a string, we can use it directly
 
 
 
 
12
  # Create the prompt
13
  prompt = "Summarize this video"
14
 
15
  # Set up the model
16
+ model = genai.GenerativeModel(model_name="models/gemini-1.5-pro", api_key = os.environ['GOOGLE_API_KEY'])
17
 
18
  # Make the LLM request
19
  print("Making LLM inference request...")
20
+ response = model.generate_content([prompt, video_path],
21
  request_options={"timeout": 2000})
22
 
23
  return response.text
24
 
25
  except Exception as e:
26
  return f"An error occurred: {str(e)}"
 
 
 
 
 
27
 
28
  # Create Gradio interface
29
  iface = gr.Interface(