chatbothrd / app.py
BramLeo's picture
Update app.py
40ca111 verified
raw
history blame
4.68 kB
# Import Library yang Diperlukan
import gradio as gr
import gspread
from oauth2client.service_account import ServiceAccountCredentials
from llama_cpp import Llama
from llama_index.core import VectorStoreIndex, Settings
from llama_index.core.node_parser import SentenceSplitter
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.llms.llama_cpp import LlamaCPP
from huggingface_hub import hf_hub_download
from llama_index.core.llms import ChatMessage
from llama_index.core.chat_engine.condense_plus_context import CondensePlusContextChatEngine
# ===================================
# 1๏ธโƒฃ Fungsi untuk Membaca Google Spreadsheet
# ===================================
def read_google_sheet():
# Tentukan scope akses ke Google Sheets & Drive
scope = ["https://spreadsheets.google.com/feeds", "https://www.googleapis.com/auth/drive"]
# Load kredensial dari file credentials.json
creds = ServiceAccountCredentials.from_json_keyfile_name("credentials.json", scope)
client = gspread.authorize(creds)
# ๐Ÿ“Œ GANTI BAGIAN INI SESUAI SPREADSHEET ANDA
spreadsheet = client.open("datatarget") # ๐Ÿ”น Ganti dengan nama spreadsheet Anda
sheet = spreadsheet.datatarget # ๐Ÿ”น Jika ingin sheet lain, ganti dengan spreadsheet.worksheet("NamaSheet")
# Ambil semua data dalam bentuk list (baris & kolom)
data = sheet.get_all_values()
# Format ulang data menjadi satu teks panjang (dapat disesuaikan)
formatted_text = "\n".join([" | ".join(row) for row in data])
return formatted_text
# ===================================
# 2๏ธโƒฃ Fungsi untuk Mengunduh Model Llama
# ===================================
def initialize_llama_model():
model_path = hf_hub_download(
repo_id="TheBLoke/zephyr-7b-beta-GGUF", # ๐Ÿ“Œ Repo model HuggingFace
filename="zephyr-7b-beta.Q4_K_M.gguf", # ๐Ÿ“Œ Nama file model
cache_dir="./models"
)
return model_path
# ===================================
# 3๏ธโƒฃ Inisialisasi Model dan Pengaturan
# ===================================
def initialize_settings(model_path):
Settings.llm = LlamaCPP(
model_path=model_path,
temperature=0.7,
)
# ===================================
# 4๏ธโƒฃ Inisialisasi Index dari Data Spreadsheet
# ===================================
def initialize_index():
# ๐Ÿ”น Ambil teks dari Google Spreadsheet
text_data = read_google_sheet()
# ๐Ÿ”น Konversi teks ke dalam format dokumen
documents = [text_data]
# ๐Ÿ”น Proses data menjadi node untuk vektor embedding
parser = SentenceSplitter(chunk_size=150, chunk_overlap=10)
nodes = parser.get_nodes_from_documents(documents)
# ๐Ÿ”น Gunakan model embedding
embedding = HuggingFaceEmbedding("sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
Settings.embed_model = embedding
# ๐Ÿ”น Buat index vektor
index = VectorStoreIndex(nodes)
return index
# ===================================
# 5๏ธโƒฃ Inisialisasi Mesin Chatbot
# ===================================
def initialize_chat_engine(index):
retriever = index.as_retriever(similarity_top_k=3)
chat_engine = CondensePlusContextChatEngine.from_defaults(
retriever=retriever,
verbose=True,
)
return chat_engine
# ===================================
# 6๏ธโƒฃ Fungsi untuk Menghasilkan Respons Chatbot
# ===================================
def generate_response(message, history, chat_engine):
if history is None:
history = []
chat_messages = [
ChatMessage(
role="system",
content="Anda adalah chatbot yang menjawab dalam bahasa Indonesia berdasarkan dokumen di Google Spreadsheet."
),
]
response = chat_engine.stream_chat(message)
text = "".join(response.response_gen) # ๐Ÿ”น Gabungkan semua token menjadi string
history.append((message, text))
return history
# ===================================
# 7๏ธโƒฃ Fungsi Utama untuk Menjalankan Aplikasi
# ===================================
def main():
# ๐Ÿ”น Unduh model dan inisialisasi pengaturan
model_path = initialize_llama_model()
initialize_settings(model_path)
# ๐Ÿ”น Inisialisasi index dan chat engine
index = initialize_index()
chat_engine = initialize_chat_engine(index)
# ๐Ÿ”น Fungsi untuk chat
def chatbot_response(message, history):
return generate_response(message, history, chat_engine)
# ๐Ÿ”น Luncurkan Gradio UI
gr.Interface(
fn=chatbot_response,
inputs=["text"],
outputs=["text"],
).launch()
if __name__ == "__main__":
main()