Update app.py
Browse files
app.py
CHANGED
@@ -7,14 +7,14 @@ import torchaudio
|
|
7 |
from generator import Segment, load_csm_1b
|
8 |
from huggingface_hub import hf_hub_download, login
|
9 |
from watermarking import watermark
|
10 |
-
import
|
11 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
12 |
import logging
|
13 |
|
14 |
# Configure logging
|
15 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
16 |
|
17 |
-
# Authentication and Configuration
|
18 |
try:
|
19 |
api_key = os.getenv("HF_TOKEN")
|
20 |
if not api_key:
|
@@ -30,55 +30,37 @@ except (ValueError, TypeError) as e:
|
|
30 |
logging.error(f"Configuration error: {e}")
|
31 |
raise
|
32 |
|
33 |
-
SPACE_INTRO_TEXT = """
|
34 |
# Sesame CSM 1B - Conversational Demo
|
35 |
|
36 |
-
This demo allows you to have a conversation with Sesame CSM 1B, leveraging
|
37 |
|
38 |
-
*Disclaimer: This demo relies on several large models.
|
39 |
"""
|
40 |
|
41 |
-
#
|
42 |
-
|
|
|
|
|
43 |
MAX_CONTEXT_SEGMENTS = 5
|
44 |
MAX_GEMMA_LENGTH = 300
|
45 |
-
device = "cuda" # if torch.cuda.is_available() else "cpu"
|
46 |
|
47 |
-
# Global
|
48 |
conversation_history = []
|
49 |
|
50 |
-
#
|
51 |
-
global_generator = None
|
52 |
-
global_whisper_model = None
|
53 |
-
global_model_a = None
|
54 |
-
# global_whisper_metadata = None # No longer needed at the global level
|
55 |
-
global_tokenizer_gemma = None
|
56 |
-
global_model_gemma = None
|
57 |
-
|
58 |
-
|
59 |
-
# --- HELPER FUNCTIONS ---
|
60 |
|
61 |
-
def transcribe_audio(audio_path: str, whisper_model
|
62 |
-
"""Transcribes audio using WhisperX and aligns it."""
|
63 |
try:
|
64 |
-
audio =
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
# Align Whisper output
|
71 |
-
model_a, metadata = whisperx.load_align_model(language_code=language, device=device) #Load it here to ensure metadata is extracted.
|
72 |
-
result_aligned = whisperx.align(result["segments"], model_a, metadata, audio, device, return_char_alignments=False)
|
73 |
-
|
74 |
-
return result_aligned["segments"][0]["text"]
|
75 |
except Exception as e:
|
76 |
-
logging.error(f"
|
77 |
return "Error: Could not transcribe audio."
|
78 |
|
79 |
-
|
80 |
-
def generate_response(text: str, tokenizer_gemma, model_gemma) -> str:
|
81 |
-
"""Generates a response using Gemma."""
|
82 |
try:
|
83 |
input_text = "Here is a response for the user. " + text
|
84 |
input = tokenizer_gemma(input_text, return_tensors="pt").to(device)
|
@@ -88,94 +70,88 @@ def generate_response(text: str, tokenizer_gemma, model_gemma) -> str:
|
|
88 |
logging.error(f"Gemma response generation error: {e}")
|
89 |
return "I'm sorry, I encountered an error generating a response."
|
90 |
|
91 |
-
|
92 |
-
def load_audio(audio_path: str) -> torch.Tensor:
|
93 |
-
"""Loads audio from file and returns a torch tensor."""
|
94 |
try:
|
95 |
audio_tensor, sample_rate = torchaudio.load(audio_path)
|
96 |
-
audio_tensor = audio_tensor.mean(dim=0)
|
97 |
-
if sample_rate !=
|
98 |
-
audio_tensor = torchaudio.functional.resample(
|
99 |
-
audio_tensor, orig_freq=sample_rate, new_freq=global_generator.sample_rate
|
100 |
-
)
|
101 |
return audio_tensor
|
102 |
except Exception as e:
|
103 |
logging.error(f"Audio loading error: {e}")
|
104 |
raise gr.Error("Could not load or process the audio file.") from e
|
105 |
|
106 |
-
|
107 |
def clear_history():
|
108 |
-
"""Clears the conversation history"""
|
109 |
global conversation_history
|
110 |
conversation_history = []
|
111 |
logging.info("Conversation history cleared.")
|
112 |
return "Conversation history cleared."
|
113 |
|
|
|
114 |
|
115 |
-
#
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
if not user_audio:
|
124 |
raise ValueError("No audio input received.")
|
125 |
-
|
126 |
-
# Load models if not already loaded
|
127 |
-
if global_generator is None:
|
128 |
-
model_path = hf_hub_download(repo_id="sesame/csm-1b", filename="ckpt.pt")
|
129 |
-
global_generator = load_csm_1b(model_path, device)
|
130 |
-
logging.info("Sesame CSM 1B loaded successfully on GPU.")
|
131 |
-
|
132 |
-
if global_whisper_model is None:
|
133 |
-
global_whisper_model = whisperx.load_model("large-v2", device) # No unpacking
|
134 |
-
logging.info("WhisperX model loaded successfully on GPU.")
|
135 |
-
|
136 |
-
if global_tokenizer_gemma is None:
|
137 |
-
global_tokenizer_gemma = AutoTokenizer.from_pretrained("google/gemma-3-1b-pt")
|
138 |
-
global_model_gemma = AutoModelForCausalLM.from_pretrained("google/gemma-3-1b-pt").to(device)
|
139 |
-
logging.info("Gemma 3 1B pt model loaded successfully on GPU.")
|
140 |
-
return _infer(user_audio, global_generator, global_whisper_model, global_model_a, global_tokenizer_gemma, global_model_gemma) #Removed Metadata
|
141 |
except Exception as e:
|
142 |
logging.exception(f"Inference error: {e}")
|
143 |
raise gr.Error(f"An error occurred during processing: {e}")
|
144 |
|
145 |
-
|
146 |
-
def _infer(user_audio, generator, whisper_model, model_a, tokenizer_gemma, model_gemma) -> tuple:
|
147 |
-
"""Processes the user input, generates a response, and returns audio."""
|
148 |
global conversation_history
|
149 |
|
150 |
try:
|
151 |
-
|
152 |
-
user_text = transcribe_audio(user_audio, whisper_model, model_a) #Removed Metadata
|
153 |
logging.info(f"User: {user_text}")
|
154 |
|
155 |
-
|
156 |
-
ai_text = generate_response(user_text, tokenizer_gemma, model_gemma)
|
157 |
logging.info(f"AI: {ai_text}")
|
158 |
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
|
|
|
|
|
|
167 |
|
168 |
-
|
169 |
-
user_segment = Segment(speaker = SPEAKER_ID, text = 'User Audio', audio = load_audio(user_audio))
|
170 |
ai_segment = Segment(speaker = SPEAKER_ID, text = 'AI Audio', audio = ai_audio)
|
171 |
conversation_history.append(user_segment)
|
172 |
conversation_history.append(ai_segment)
|
173 |
|
174 |
-
#Limit Conversation History
|
175 |
if len(conversation_history) > MAX_CONTEXT_SEGMENTS:
|
176 |
conversation_history.pop(0)
|
177 |
|
178 |
-
# 4. Watermarking and Audio Conversion
|
179 |
audio_tensor, wm_sample_rate = watermark(
|
180 |
generator._watermarker, ai_audio, generator.sample_rate, CSM_1B_HF_WATERMARK
|
181 |
)
|
@@ -190,8 +166,7 @@ def _infer(user_audio, generator, whisper_model, model_a, tokenizer_gemma, model
|
|
190 |
logging.exception(f"Error in _infer: {e}")
|
191 |
raise gr.Error(f"An error occurred during processing: {e}")
|
192 |
|
193 |
-
|
194 |
-
# --- GRADIO INTERFACE ---
|
195 |
|
196 |
with gr.Blocks() as app:
|
197 |
gr.Markdown(SPACE_INTRO_TEXT)
|
@@ -204,4 +179,4 @@ with gr.Blocks() as app:
|
|
204 |
btn.click(infer, inputs=[audio_input], outputs=[audio_output])
|
205 |
clear_button.click(clear_history, outputs=[status_display])
|
206 |
|
207 |
-
app.launch(
|
|
|
7 |
from generator import Segment, load_csm_1b
|
8 |
from huggingface_hub import hf_hub_download, login
|
9 |
from watermarking import watermark
|
10 |
+
import whisper
|
11 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
12 |
import logging
|
13 |
|
14 |
# Configure logging
|
15 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
16 |
|
17 |
+
# --- Authentication and Configuration --- (Moved BEFORE model loading)
|
18 |
try:
|
19 |
api_key = os.getenv("HF_TOKEN")
|
20 |
if not api_key:
|
|
|
30 |
logging.error(f"Configuration error: {e}")
|
31 |
raise
|
32 |
|
33 |
+
SPACE_INTRO_TEXT = """
|
34 |
# Sesame CSM 1B - Conversational Demo
|
35 |
|
36 |
+
This demo allows you to have a conversation with Sesame CSM 1B, leveraging Whisper for speech-to-text and Gemma for generating responses. This is an experimental integration and may require significant resources.
|
37 |
|
38 |
+
*Disclaimer: This demo relies on several large models. Expect longer processing times, and potential resource limitations.*
|
39 |
"""
|
40 |
|
41 |
+
# --- Model Loading --- (Moved INSIDE infer function)
|
42 |
+
|
43 |
+
# --- Constants --- (Constants can stay outside)
|
44 |
+
SPEAKER_ID = 0
|
45 |
MAX_CONTEXT_SEGMENTS = 5
|
46 |
MAX_GEMMA_LENGTH = 300
|
|
|
47 |
|
48 |
+
# --- Global Conversation History ---
|
49 |
conversation_history = []
|
50 |
|
51 |
+
# --- Helper Functions ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
def transcribe_audio(audio_path: str, whisper_model) -> str: # Pass whisper_model
|
|
|
54 |
try:
|
55 |
+
audio = whisper.load_audio(audio_path)
|
56 |
+
audio = whisper.pad_or_trim(audio)
|
57 |
+
result = whisper_model.transcribe(audio)
|
58 |
+
return result["text"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
except Exception as e:
|
60 |
+
logging.error(f"Whisper transcription error: {e}")
|
61 |
return "Error: Could not transcribe audio."
|
62 |
|
63 |
+
def generate_response(text: str, model_gemma, tokenizer_gemma, device) -> str: # Pass model and tokenizer
|
|
|
|
|
64 |
try:
|
65 |
input_text = "Here is a response for the user. " + text
|
66 |
input = tokenizer_gemma(input_text, return_tensors="pt").to(device)
|
|
|
70 |
logging.error(f"Gemma response generation error: {e}")
|
71 |
return "I'm sorry, I encountered an error generating a response."
|
72 |
|
73 |
+
def load_audio(audio_path: str, generator) -> torch.Tensor: #Pass generator
|
|
|
|
|
74 |
try:
|
75 |
audio_tensor, sample_rate = torchaudio.load(audio_path)
|
76 |
+
audio_tensor = audio_tensor.mean(dim=0)
|
77 |
+
if sample_rate != generator.sample_rate:
|
78 |
+
audio_tensor = torchaudio.functional.resample(audio_tensor, orig_freq=sample_rate, new_freq=generator.sample_rate)
|
|
|
|
|
79 |
return audio_tensor
|
80 |
except Exception as e:
|
81 |
logging.error(f"Audio loading error: {e}")
|
82 |
raise gr.Error("Could not load or process the audio file.") from e
|
83 |
|
|
|
84 |
def clear_history():
|
|
|
85 |
global conversation_history
|
86 |
conversation_history = []
|
87 |
logging.info("Conversation history cleared.")
|
88 |
return "Conversation history cleared."
|
89 |
|
90 |
+
# --- Main Inference Function ---
|
91 |
|
92 |
+
@spaces.GPU(duration=gpu_timeout) # Decorator FIRST
|
93 |
+
def infer(user_audio) -> tuple[int, np.ndarray]:
|
94 |
+
# --- CUDA Availability Check (INSIDE infer) ---
|
95 |
+
if torch.cuda.is_available():
|
96 |
+
print(f"CUDA is available! Device count: {torch.cuda.device_count()}")
|
97 |
+
print(f"CUDA device name: {torch.cuda.get_device_name(0)}")
|
98 |
+
print(f"CUDA version: {torch.version.cuda}")
|
99 |
+
device = "cuda"
|
100 |
+
else:
|
101 |
+
print("CUDA is NOT available. Using CPU.") # Use CPU, don't raise
|
102 |
+
device = "cpu"
|
103 |
|
104 |
try:
|
105 |
+
# --- Model Loading (INSIDE infer, after device is set) ---
|
106 |
+
model_path = hf_hub_download(repo_id="sesame/csm-1b", filename="ckpt.pt")
|
107 |
+
generator = load_csm_1b(model_path, device)
|
108 |
+
logging.info("Sesame CSM 1B loaded successfully.")
|
109 |
+
|
110 |
+
whisper_model = whisper.load_model("large-v2", device=device)
|
111 |
+
logging.info("Whisper model loaded successfully.")
|
112 |
+
|
113 |
+
tokenizer_gemma = AutoTokenizer.from_pretrained("google/gemma-3-1b-pt")
|
114 |
+
model_gemma = AutoModelForCausalLM.from_pretrained("google/gemma-3-1b-pt").to(device)
|
115 |
+
logging.info("Gemma 3 1B pt model loaded successfully.")
|
116 |
+
|
117 |
if not user_audio:
|
118 |
raise ValueError("No audio input received.")
|
119 |
+
return _infer(user_audio, generator, whisper_model, tokenizer_gemma, model_gemma, device) #Pass all models
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
except Exception as e:
|
121 |
logging.exception(f"Inference error: {e}")
|
122 |
raise gr.Error(f"An error occurred during processing: {e}")
|
123 |
|
124 |
+
def _infer(user_audio, generator, whisper_model, tokenizer_gemma, model_gemma, device) -> tuple[int, np.ndarray]:
|
|
|
|
|
125 |
global conversation_history
|
126 |
|
127 |
try:
|
128 |
+
user_text = transcribe_audio(user_audio, whisper_model) # Pass whisper_model
|
|
|
129 |
logging.info(f"User: {user_text}")
|
130 |
|
131 |
+
ai_text = generate_response(user_text, model_gemma, tokenizer_gemma, device) # Pass model and tokenizer
|
|
|
132 |
logging.info(f"AI: {ai_text}")
|
133 |
|
134 |
+
try:
|
135 |
+
ai_audio = generator.generate(
|
136 |
+
text=ai_text,
|
137 |
+
speaker=SPEAKER_ID,
|
138 |
+
context=conversation_history,
|
139 |
+
max_audio_length_ms=30_000,
|
140 |
+
)
|
141 |
+
logging.info("Audio generated successfully.")
|
142 |
+
except Exception as e:
|
143 |
+
logging.error(f"Sesame response generation error: {e}")
|
144 |
+
raise gr.Error(f"Sesame response generation error: {e}")
|
145 |
|
146 |
+
|
147 |
+
user_segment = Segment(speaker = SPEAKER_ID, text = 'User Audio', audio = load_audio(user_audio, generator)) #Pass Generator
|
148 |
ai_segment = Segment(speaker = SPEAKER_ID, text = 'AI Audio', audio = ai_audio)
|
149 |
conversation_history.append(user_segment)
|
150 |
conversation_history.append(ai_segment)
|
151 |
|
|
|
152 |
if len(conversation_history) > MAX_CONTEXT_SEGMENTS:
|
153 |
conversation_history.pop(0)
|
154 |
|
|
|
155 |
audio_tensor, wm_sample_rate = watermark(
|
156 |
generator._watermarker, ai_audio, generator.sample_rate, CSM_1B_HF_WATERMARK
|
157 |
)
|
|
|
166 |
logging.exception(f"Error in _infer: {e}")
|
167 |
raise gr.Error(f"An error occurred during processing: {e}")
|
168 |
|
169 |
+
# --- Gradio Interface ---
|
|
|
170 |
|
171 |
with gr.Blocks() as app:
|
172 |
gr.Markdown(SPACE_INTRO_TEXT)
|
|
|
179 |
btn.click(infer, inputs=[audio_input], outputs=[audio_output])
|
180 |
clear_button.click(clear_history, outputs=[status_display])
|
181 |
|
182 |
+
app.launch(ssr_mode=False)
|