Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
import os
|
2 |
-
|
3 |
import gradio as gr
|
4 |
import numpy as np
|
5 |
import spaces
|
@@ -8,251 +7,187 @@ import torchaudio
|
|
8 |
from generator import Segment, load_csm_1b
|
9 |
from huggingface_hub import hf_hub_download, login
|
10 |
from watermarking import watermark
|
|
|
|
|
|
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
CSM_1B_HF_WATERMARK = list(map(int, os.getenv("WATERMARK_KEY").split(" ")))
|
15 |
-
|
16 |
-
login(token=api_key)
|
17 |
-
|
18 |
-
SPACE_INTRO_TEXT = """\
|
19 |
-
# Sesame CSM 1B
|
20 |
-
|
21 |
-
Generate from CSM 1B (Conversational Speech Model).
|
22 |
-
Code is available on GitHub: [SesameAILabs/csm](https://github.com/SesameAILabs/csm).
|
23 |
-
Checkpoint is [hosted on HuggingFace](https://huggingface.co/sesame/csm-1b).
|
24 |
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
29 |
-
|
|
|
30 |
|
31 |
-
|
|
|
|
|
|
|
32 |
|
33 |
-
"""
|
|
|
34 |
|
35 |
-
|
36 |
-
## Conversation content
|
37 |
|
38 |
-
|
39 |
"""
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
"text": (
|
53 |
-
"like revising for an exam I'd have to try and like keep up the momentum because I'd "
|
54 |
-
"start really early I'd be like okay I'm gonna start revising now and then like "
|
55 |
-
"you're revising for ages and then I just like start losing steam I didn't do that "
|
56 |
-
"for the exam we had recently to be fair that was a more of a last minute scenario "
|
57 |
-
"but like yeah I'm trying to like yeah I noticed this yesterday that like Mondays I "
|
58 |
-
"sort of start the day with this not like a panic but like a"
|
59 |
-
),
|
60 |
-
"audio": "prompts/conversational_a.wav",
|
61 |
-
},
|
62 |
-
"conversational_b": {
|
63 |
-
"text": (
|
64 |
-
"like a super Mario level. Like it's very like high detail. And like, once you get "
|
65 |
-
"into the park, it just like, everything looks like a computer game and they have all "
|
66 |
-
"these, like, you know, if, if there's like a, you know, like in a Mario game, they "
|
67 |
-
"will have like a question block. And if you like, you know, punch it, a coin will "
|
68 |
-
"come out. So like everyone, when they come into the park, they get like this little "
|
69 |
-
"bracelet and then you can go punching question blocks around."
|
70 |
-
),
|
71 |
-
"audio": "prompts/conversational_b.wav",
|
72 |
-
},
|
73 |
-
"read_speech_a": {
|
74 |
-
"text": (
|
75 |
-
"And Lake turned round upon me, a little abruptly, his odd yellowish eyes, a little "
|
76 |
-
"like those of the sea eagle, and the ghost of his smile that flickered on his "
|
77 |
-
"singularly pale face, with a stern and insidious look, confronted me."
|
78 |
-
),
|
79 |
-
"audio": "prompts/read_speech_a.wav",
|
80 |
-
},
|
81 |
-
"read_speech_b": {
|
82 |
-
"text": (
|
83 |
-
"He was such a big boy that he wore high boots and carried a jack knife. He gazed and "
|
84 |
-
"gazed at the cap, and could not keep from fingering the blue tassel."
|
85 |
-
),
|
86 |
-
"audio": "prompts/read_speech_b.wav",
|
87 |
-
},
|
88 |
-
"read_speech_c": {
|
89 |
-
"text": (
|
90 |
-
"All passed so quickly, there was so much going on around him, the Tree quite forgot "
|
91 |
-
"to look to himself."
|
92 |
-
),
|
93 |
-
"audio": "prompts/read_speech_c.wav",
|
94 |
-
},
|
95 |
-
"read_speech_d": {
|
96 |
-
"text": (
|
97 |
-
"Suddenly I was back in the old days Before you felt we ought to drift apart. It was "
|
98 |
-
"some trick-the way your eyebrows raise."
|
99 |
-
),
|
100 |
-
"audio": "prompts/read_speech_d.wav",
|
101 |
-
},
|
102 |
-
}
|
103 |
-
|
104 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
105 |
-
model_path = hf_hub_download(repo_id="sesame/csm-1b", filename="ckpt.pt")
|
106 |
-
generator = load_csm_1b(model_path, device)
|
107 |
|
|
|
|
|
|
|
|
|
108 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
@spaces.GPU(duration=gpu_timeout)
|
110 |
-
def infer(
|
111 |
-
|
112 |
-
text_prompt_speaker_b,
|
113 |
-
audio_prompt_speaker_a,
|
114 |
-
audio_prompt_speaker_b,
|
115 |
-
gen_conversation_input,
|
116 |
-
) -> tuple[np.ndarray, int]:
|
117 |
-
# Estimate token limit, otherwise failure might happen after many utterances have been generated.
|
118 |
-
if len(gen_conversation_input.strip() + text_prompt_speaker_a.strip() + text_prompt_speaker_b.strip()) >= 2000:
|
119 |
-
raise gr.Error("Prompts and conversation too long.", duration=30)
|
120 |
-
|
121 |
try:
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
)
|
129 |
-
except ValueError as e:
|
130 |
-
raise gr.Error(f"Error generating audio: {e}", duration=120)
|
131 |
-
|
132 |
-
|
133 |
-
def _infer(
|
134 |
-
text_prompt_speaker_a,
|
135 |
-
text_prompt_speaker_b,
|
136 |
-
audio_prompt_speaker_a,
|
137 |
-
audio_prompt_speaker_b,
|
138 |
-
gen_conversation_input,
|
139 |
-
) -> tuple[np.ndarray, int]:
|
140 |
-
audio_prompt_a = prepare_prompt(text_prompt_speaker_a, 0, audio_prompt_speaker_a)
|
141 |
-
audio_prompt_b = prepare_prompt(text_prompt_speaker_b, 1, audio_prompt_speaker_b)
|
142 |
-
|
143 |
-
prompt_segments: list[Segment] = [audio_prompt_a, audio_prompt_b]
|
144 |
-
generated_segments: list[Segment] = []
|
145 |
-
|
146 |
-
conversation_lines = [line.strip() for line in gen_conversation_input.strip().split("\n") if line.strip()]
|
147 |
-
for i, line in enumerate(conversation_lines):
|
148 |
-
# Alternating speakers A and B, starting with A
|
149 |
-
speaker_id = i % 2
|
150 |
-
|
151 |
-
audio_tensor = generator.generate(
|
152 |
-
text=line,
|
153 |
-
speaker=speaker_id,
|
154 |
-
context=prompt_segments + generated_segments,
|
155 |
-
max_audio_length_ms=30_000,
|
156 |
-
)
|
157 |
-
generated_segments.append(Segment(text=line, speaker=speaker_id, audio=audio_tensor))
|
158 |
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
)
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
def create_speaker_prompt_ui(speaker_name: str):
|
195 |
-
speaker_dropdown = gr.Dropdown(
|
196 |
-
choices=list(SPEAKER_PROMPTS.keys()), label="Select a predefined speaker", value=speaker_name
|
197 |
-
)
|
198 |
-
with gr.Accordion("Or add your own voice prompt", open=False):
|
199 |
-
text_prompt_speaker = gr.Textbox(label="Speaker prompt", lines=4, value=SPEAKER_PROMPTS[speaker_name]["text"])
|
200 |
-
audio_prompt_speaker = gr.Audio(
|
201 |
-
label="Speaker prompt", type="filepath", value=SPEAKER_PROMPTS[speaker_name]["audio"]
|
202 |
)
|
203 |
|
204 |
-
|
|
|
205 |
|
|
|
|
|
|
|
|
|
|
|
206 |
|
|
|
207 |
with gr.Blocks() as app:
|
208 |
gr.Markdown(SPACE_INTRO_TEXT)
|
209 |
-
gr.
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
speaker_a_dropdown, text_prompt_speaker_a, audio_prompt_speaker_a = create_speaker_prompt_ui(
|
214 |
-
"conversational_a"
|
215 |
-
)
|
216 |
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
"conversational_b"
|
221 |
-
)
|
222 |
|
223 |
-
|
224 |
-
if speaker in SPEAKER_PROMPTS:
|
225 |
-
return SPEAKER_PROMPTS[speaker]["audio"]
|
226 |
-
return None
|
227 |
-
|
228 |
-
def update_text(speaker):
|
229 |
-
if speaker in SPEAKER_PROMPTS:
|
230 |
-
return SPEAKER_PROMPTS[speaker]["text"]
|
231 |
-
return None
|
232 |
-
|
233 |
-
speaker_a_dropdown.change(fn=update_audio, inputs=[speaker_a_dropdown], outputs=[audio_prompt_speaker_a])
|
234 |
-
speaker_b_dropdown.change(fn=update_audio, inputs=[speaker_b_dropdown], outputs=[audio_prompt_speaker_b])
|
235 |
-
|
236 |
-
speaker_a_dropdown.change(fn=update_text, inputs=[speaker_a_dropdown], outputs=[text_prompt_speaker_a])
|
237 |
-
speaker_b_dropdown.change(fn=update_text, inputs=[speaker_b_dropdown], outputs=[text_prompt_speaker_b])
|
238 |
-
|
239 |
-
gr.Markdown(CONVO_INTRO_TEXT)
|
240 |
-
|
241 |
-
gen_conversation_input = gr.TextArea(label="conversation", lines=20, value=DEFAULT_CONVERSATION)
|
242 |
-
generate_btn = gr.Button("Generate conversation", variant="primary")
|
243 |
-
gr.Markdown("GPU time limited to 3 minutes, for longer usage duplicate the space.")
|
244 |
-
audio_output = gr.Audio(label="Synthesized audio")
|
245 |
-
|
246 |
-
generate_btn.click(
|
247 |
-
infer,
|
248 |
-
inputs=[
|
249 |
-
text_prompt_speaker_a,
|
250 |
-
text_prompt_speaker_b,
|
251 |
-
audio_prompt_speaker_a,
|
252 |
-
audio_prompt_speaker_b,
|
253 |
-
gen_conversation_input,
|
254 |
-
],
|
255 |
-
outputs=[audio_output],
|
256 |
-
)
|
257 |
-
|
258 |
-
app.launch(ssr_mode=True)
|
|
|
1 |
import os
|
|
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
import spaces
|
|
|
7 |
from generator import Segment, load_csm_1b
|
8 |
from huggingface_hub import hf_hub_download, login
|
9 |
from watermarking import watermark
|
10 |
+
import whisperx
|
11 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
12 |
+
import logging
|
13 |
|
14 |
+
# Configure logging
|
15 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
# Authentication and Configuration
|
18 |
+
try:
|
19 |
+
api_key = os.getenv("HF_TOKEN")
|
20 |
+
if not api_key:
|
21 |
+
raise ValueError("HF_TOKEN not found in environment variables.")
|
22 |
+
login(token=api_key)
|
23 |
|
24 |
+
CSM_1B_HF_WATERMARK = list(map(int, os.getenv("WATERMARK_KEY").split(" ")))
|
25 |
+
if not CSM_1B_HF_WATERMARK:
|
26 |
+
raise ValueError("WATERMARK_KEY not found or invalid in environment variables.")
|
27 |
|
28 |
+
gpu_timeout = int(os.getenv("GPU_TIMEOUT", 180))
|
29 |
+
except (ValueError, TypeError) as e:
|
30 |
+
logging.error(f"Configuration error: {e}")
|
31 |
+
raise # Re-raise the exception to halt the application
|
32 |
|
33 |
+
SPACE_INTRO_TEXT = """\
|
34 |
+
# Sesame CSM 1B - Conversational Demo
|
35 |
|
36 |
+
This demo allows you to have a conversation with Sesame CSM 1B, leveraging WhisperX for speech-to-text and Gemma for generating responses. This is an experimental integration and may require significant resources.
|
|
|
37 |
|
38 |
+
*Disclaimer: This demo relies on several large models. Expect longer processing times, and potential resource limitations.*
|
39 |
"""
|
40 |
|
41 |
+
# Model Loading
|
42 |
+
try:
|
43 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
44 |
+
model_path = hf_hub_download(repo_id="sesame/csm-1b", filename="ckpt.pt")
|
45 |
+
generator = load_csm_1b(model_path, device)
|
46 |
+
logging.info("Sesame CSM 1B loaded successfully.")
|
47 |
+
|
48 |
+
whisper_model, whisper_metadata = whisperx.load_model("large-v2", device)
|
49 |
+
model_a, whisper_metadata = whisperx.load_align_model(language_code=whisper_metadata.language, device=device)
|
50 |
+
logging.info("WhisperX model loaded successfully.")
|
51 |
+
|
52 |
+
# Load Gemma 1.1 2B - adjust model name if needed
|
53 |
+
tokenizer_gemma = AutoTokenizer.from_pretrained("google/gemma-3-1b-pt")
|
54 |
+
model_gemma = AutoModelForCausalLM.from_pretrained("google/gemma-3-1b-pt").to(device)
|
55 |
+
logging.info("Gemma 3 1B pt model loaded successfully.")
|
56 |
+
|
57 |
+
except Exception as e:
|
58 |
+
logging.error(f"Model loading error: {e}")
|
59 |
+
raise # Re-raise to prevent the app from launching with incomplete models
|
60 |
+
|
61 |
+
# Constants
|
62 |
+
SPEAKER_ID = 0 # Arbitrary speaker ID
|
63 |
+
MAX_CONTEXT_SEGMENTS = 5
|
64 |
+
MAX_GEMMA_LENGTH = 300 #Reduce for the 1.1 2b model
|
65 |
+
|
66 |
+
# Global conversation history (important: keep it inside app scope)
|
67 |
+
conversation_history = []
|
68 |
+
|
69 |
+
# --- HELPER FUNCTIONS ---
|
70 |
+
def transcribe_audio(audio_path: str) -> str:
|
71 |
+
"""Transcribes audio using WhisperX."""
|
72 |
+
try:
|
73 |
+
audio = whisperx.load_audio(audio_path)
|
74 |
+
result = whisper_model.transcribe(audio, batch_size=16) # Added batch_size
|
75 |
|
76 |
+
# Align Whisper output
|
77 |
+
result_aligned = whisperx.align(result["segments"], model_a, whisper_metadata, audio, whisper_model, device, return_char_alignments=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
+
return result_aligned["segments"][0]["text"]
|
80 |
+
except Exception as e:
|
81 |
+
logging.error(f"WhisperX transcription error: {e}")
|
82 |
+
return "Error: Could not transcribe audio." # Return an error message
|
83 |
|
84 |
+
def generate_response(text: str) -> str:
|
85 |
+
"""Generates a response using Gemma."""
|
86 |
+
try:
|
87 |
+
input_text = "Here is a response for the user. " + text
|
88 |
+
input = tokenizer_gemma(input_text, return_tensors="pt").to(device)
|
89 |
+
generated_output = model_gemma.generate(**input, max_length=MAX_GEMMA_LENGTH, early_stopping=True) # Added early_stopping
|
90 |
+
return tokenizer_gemma.decode(generated_output[0], skip_special_tokens=True)
|
91 |
+
except Exception as e:
|
92 |
+
logging.error(f"Gemma response generation error: {e}")
|
93 |
+
return "I'm sorry, I encountered an error generating a response." # Error fallback
|
94 |
+
|
95 |
+
def load_audio(audio_path: str) -> torch.Tensor:
|
96 |
+
"""Loads audio from file and returns a torch tensor."""
|
97 |
+
try:
|
98 |
+
audio_tensor, sample_rate = torchaudio.load(audio_path)
|
99 |
+
audio_tensor = audio_tensor.mean(dim=0) # Mono audio
|
100 |
+
if sample_rate != generator.sample_rate:
|
101 |
+
audio_tensor = torchaudio.functional.resample(
|
102 |
+
audio_tensor, orig_freq=sample_rate, new_freq=generator.sample_rate
|
103 |
+
)
|
104 |
+
return audio_tensor
|
105 |
+
except Exception as e:
|
106 |
+
logging.error(f"Audio loading error: {e}")
|
107 |
+
raise gr.Error("Could not load or process the audio file.") from e # Re-raise as Gradio error
|
108 |
+
|
109 |
+
def clear_history():
|
110 |
+
"""Clears the conversation history"""
|
111 |
+
global conversation_history
|
112 |
+
conversation_history = []
|
113 |
+
logging.info("Conversation history cleared.")
|
114 |
+
return "Conversation history cleared."
|
115 |
+
|
116 |
+
# --- MAIN INFERENCE FUNCTION ---
|
117 |
@spaces.GPU(duration=gpu_timeout)
|
118 |
+
def infer(user_audio) -> tuple[int, np.ndarray]: # Return sample_rate as int
|
119 |
+
"""Infers a response from the user audio."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
try:
|
121 |
+
if not user_audio:
|
122 |
+
raise ValueError("No audio input received.")
|
123 |
+
return _infer(user_audio)
|
124 |
+
except Exception as e:
|
125 |
+
logging.exception(f"Inference error: {e}") # Log the full exception
|
126 |
+
raise gr.Error(f"An error occurred during processing: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
+
def _infer(user_audio) -> tuple[int, np.ndarray]: # Return sample_rate as int
|
129 |
+
"""Processes the user input, generates a response, and returns audio."""
|
130 |
+
global conversation_history # Declare to modify the global list
|
131 |
|
132 |
+
try:
|
133 |
+
# 1. ASR: Transcribe user audio using WhisperX
|
134 |
+
user_text = transcribe_audio(user_audio)
|
135 |
+
logging.info(f"User: {user_text}")
|
136 |
+
|
137 |
+
# 2. LLM: Generate a response using Gemma
|
138 |
+
ai_text = generate_response(user_text)
|
139 |
+
logging.info(f"AI: {ai_text}")
|
140 |
+
|
141 |
+
# 3. Generate audio using the CSM model
|
142 |
+
try:
|
143 |
+
ai_audio = generator.generate(
|
144 |
+
text=ai_text,
|
145 |
+
speaker=SPEAKER_ID,
|
146 |
+
context=conversation_history,
|
147 |
+
max_audio_length_ms=30_000,
|
148 |
+
)
|
149 |
+
logging.info("Audio generated successfully.")
|
150 |
+
except Exception as e:
|
151 |
+
logging.error(f"Gemma response generation error: {e}")
|
152 |
+
raise gr.Error(f"Gemma response generation error: {e}") # Error fallback
|
153 |
+
|
154 |
+
#Update conversation history with user input and ai response.
|
155 |
+
user_segment = Segment(speaker = SPEAKER_ID, text = 'User Audio', audio = load_audio(user_audio))
|
156 |
+
ai_segment = Segment(speaker = SPEAKER_ID, text = 'AI Audio', audio = ai_audio)
|
157 |
+
conversation_history.append(user_segment)
|
158 |
+
conversation_history.append(ai_segment)
|
159 |
+
|
160 |
+
#Limit Conversation History
|
161 |
+
if len(conversation_history) > MAX_CONTEXT_SEGMENTS:
|
162 |
+
conversation_history.pop(0)
|
163 |
+
|
164 |
+
# 4. Watermarking and Audio Conversion
|
165 |
+
audio_tensor, wm_sample_rate = watermark(
|
166 |
+
generator._watermarker, ai_audio, generator.sample_rate, CSM_1B_HF_WATERMARK
|
167 |
)
|
168 |
+
audio_tensor = torchaudio.functional.resample(
|
169 |
+
audio_tensor, orig_freq=wm_sample_rate, new_freq=generator.sample_rate
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
)
|
171 |
|
172 |
+
ai_audio_array = (audio_tensor * 32768).to(torch.int16).cpu().numpy()
|
173 |
+
return generator.sample_rate, ai_audio_array
|
174 |
|
175 |
+
except Exception as e:
|
176 |
+
logging.exception(f"Error in _infer: {e}")
|
177 |
+
# Log the full exception including stack trace for debugging.
|
178 |
+
# It's crucial to log the *exception*, not just the error message.
|
179 |
+
raise gr.Error(f"An error occurred during processing: {e}")
|
180 |
|
181 |
+
# --- GRADIO INTERFACE ---
|
182 |
with gr.Blocks() as app:
|
183 |
gr.Markdown(SPACE_INTRO_TEXT)
|
184 |
+
audio_input = gr.Audio(label="Your Input", source="microphone", type="filepath")
|
185 |
+
audio_output = gr.Audio(label="AI Response")
|
186 |
+
clear_button = gr.Button("Clear Conversation History")
|
187 |
+
status_display = gr.Textbox(label="Status", visible=False)
|
|
|
|
|
|
|
188 |
|
189 |
+
btn = gr.Button("Generate Response")
|
190 |
+
btn.click(infer, inputs=[audio_input], outputs=[audio_output])
|
191 |
+
clear_button.click(clear_history, outputs=[status_display]) # No input needed
|
|
|
|
|
192 |
|
193 |
+
app.launch(ssr_mode=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|