Spaces:
Runtime error
Runtime error
feat: Add support for video input and frame-by-frame processing in YOLOv10 Gradio app
Browse files
app.py
CHANGED
@@ -3,7 +3,8 @@ from ultralytics import YOLOv10
|
|
3 |
import supervision as sv
|
4 |
import spaces
|
5 |
from huggingface_hub import hf_hub_download
|
6 |
-
|
|
|
7 |
|
8 |
def download_models(model_id):
|
9 |
hf_hub_download("BoukamchaSmartVisions/Yolov10", filename=f"{model_id}", local_dir=f"./")
|
@@ -29,7 +30,6 @@ category_dict = {
|
|
29 |
77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush'
|
30 |
}
|
31 |
|
32 |
-
|
33 |
@spaces.GPU(duration=200)
|
34 |
def yolov10_inference(image, model_id, image_size, conf_threshold, iou_threshold):
|
35 |
model_path = download_models(model_id)
|
@@ -45,12 +45,55 @@ def yolov10_inference(image, model_id, image_size, conf_threshold, iou_threshold
|
|
45 |
|
46 |
return annotated_image
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
def app():
|
49 |
with gr.Blocks():
|
50 |
with gr.Row():
|
51 |
with gr.Column():
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
model_id = gr.Dropdown(
|
55 |
label="Model",
|
56 |
choices=[
|
@@ -87,53 +130,73 @@ def app():
|
|
87 |
yolov10_infer = gr.Button(value="Detect Objects")
|
88 |
|
89 |
with gr.Column():
|
90 |
-
output_image = gr.Image(type="numpy", label="Annotated Image")
|
|
|
91 |
|
92 |
yolov10_infer.click(
|
93 |
-
fn=yolov10_inference,
|
94 |
inputs=[
|
|
|
95 |
image,
|
|
|
96 |
model_id,
|
97 |
image_size,
|
98 |
conf_threshold,
|
99 |
iou_threshold,
|
100 |
],
|
101 |
-
outputs=[output_image],
|
102 |
)
|
103 |
|
104 |
gr.Examples(
|
105 |
examples=[
|
106 |
[
|
|
|
107 |
"Animals_persones.jpg",
|
|
|
108 |
"yolov10x.pt",
|
109 |
640,
|
110 |
0.25,
|
111 |
0.45,
|
112 |
],
|
113 |
[
|
|
|
114 |
"collage-horses-other-pets-white.jpg",
|
|
|
115 |
"yolov10m.pt",
|
116 |
640,
|
117 |
0.25,
|
118 |
0.45,
|
119 |
],
|
120 |
[
|
|
|
121 |
"Ville.png",
|
|
|
122 |
"yolov10b.pt",
|
123 |
640,
|
124 |
0.25,
|
125 |
0.45,
|
126 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
],
|
128 |
-
fn=yolov10_inference,
|
129 |
inputs=[
|
|
|
130 |
image,
|
|
|
131 |
model_id,
|
132 |
image_size,
|
133 |
conf_threshold,
|
134 |
iou_threshold,
|
135 |
],
|
136 |
-
outputs=[output_image],
|
137 |
cache_examples=True,
|
138 |
)
|
139 |
|
@@ -156,4 +219,4 @@ with gradio_app:
|
|
156 |
with gr.Column():
|
157 |
app()
|
158 |
|
159 |
-
gradio_app.launch(debug=True)
|
|
|
3 |
import supervision as sv
|
4 |
import spaces
|
5 |
from huggingface_hub import hf_hub_download
|
6 |
+
import cv2
|
7 |
+
import tempfile
|
8 |
|
9 |
def download_models(model_id):
|
10 |
hf_hub_download("BoukamchaSmartVisions/Yolov10", filename=f"{model_id}", local_dir=f"./")
|
|
|
30 |
77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush'
|
31 |
}
|
32 |
|
|
|
33 |
@spaces.GPU(duration=200)
|
34 |
def yolov10_inference(image, model_id, image_size, conf_threshold, iou_threshold):
|
35 |
model_path = download_models(model_id)
|
|
|
45 |
|
46 |
return annotated_image
|
47 |
|
48 |
+
def yolov10_video_inference(video, model_id, image_size, conf_threshold, iou_threshold):
|
49 |
+
model_path = download_models(model_id)
|
50 |
+
model = YOLOv10(model_path)
|
51 |
+
|
52 |
+
cap = cv2.VideoCapture(video)
|
53 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
54 |
+
out = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
|
55 |
+
out_path = out.name
|
56 |
+
|
57 |
+
ret, frame = cap.read()
|
58 |
+
height, width, _ = frame.shape
|
59 |
+
writer = cv2.VideoWriter(out_path, fourcc, 30, (width, height))
|
60 |
+
|
61 |
+
while ret:
|
62 |
+
results = model(source=frame, imgsz=image_size, iou=iou_threshold, conf=conf_threshold, verbose=False)[0]
|
63 |
+
detections = sv.Detections.from_ultralytics(results)
|
64 |
+
|
65 |
+
labels = [
|
66 |
+
f"{category_dict[class_id]} {confidence:.2f}"
|
67 |
+
for class_id, confidence in zip(detections.class_id, detections.confidence)
|
68 |
+
]
|
69 |
+
annotated_frame = box_annotator.annotate(frame, detections=detections, labels=labels)
|
70 |
+
|
71 |
+
writer.write(annotated_frame)
|
72 |
+
ret, frame = cap.read()
|
73 |
+
|
74 |
+
cap.release()
|
75 |
+
writer.release()
|
76 |
+
|
77 |
+
return out_path
|
78 |
+
|
79 |
def app():
|
80 |
with gr.Blocks():
|
81 |
with gr.Row():
|
82 |
with gr.Column():
|
83 |
+
image_or_video = gr.Radio(
|
84 |
+
label="Input Type",
|
85 |
+
choices=["Image", "Video"],
|
86 |
+
value="Image",
|
87 |
+
)
|
88 |
+
image = gr.Image(type="numpy", label="Image", visible=True)
|
89 |
+
video = gr.Video(label="Video", visible=False)
|
90 |
+
|
91 |
+
image_or_video.change(
|
92 |
+
lambda x: (gr.update(visible=x=="Image"), gr.update(visible=x=="Video")),
|
93 |
+
inputs=[image_or_video],
|
94 |
+
outputs=[image, video],
|
95 |
+
)
|
96 |
+
|
97 |
model_id = gr.Dropdown(
|
98 |
label="Model",
|
99 |
choices=[
|
|
|
130 |
yolov10_infer = gr.Button(value="Detect Objects")
|
131 |
|
132 |
with gr.Column():
|
133 |
+
output_image = gr.Image(type="numpy", label="Annotated Image", visible=True)
|
134 |
+
output_video = gr.Video(label="Annotated Video", visible=False)
|
135 |
|
136 |
yolov10_infer.click(
|
137 |
+
fn=lambda inputs: yolov10_inference(*inputs) if inputs[0] == "Image" else yolov10_video_inference(*inputs[1:]),
|
138 |
inputs=[
|
139 |
+
image_or_video,
|
140 |
image,
|
141 |
+
video,
|
142 |
model_id,
|
143 |
image_size,
|
144 |
conf_threshold,
|
145 |
iou_threshold,
|
146 |
],
|
147 |
+
outputs=[output_image, output_video],
|
148 |
)
|
149 |
|
150 |
gr.Examples(
|
151 |
examples=[
|
152 |
[
|
153 |
+
"Image",
|
154 |
"Animals_persones.jpg",
|
155 |
+
None,
|
156 |
"yolov10x.pt",
|
157 |
640,
|
158 |
0.25,
|
159 |
0.45,
|
160 |
],
|
161 |
[
|
162 |
+
"Image",
|
163 |
"collage-horses-other-pets-white.jpg",
|
164 |
+
None,
|
165 |
"yolov10m.pt",
|
166 |
640,
|
167 |
0.25,
|
168 |
0.45,
|
169 |
],
|
170 |
[
|
171 |
+
"Image",
|
172 |
"Ville.png",
|
173 |
+
None,
|
174 |
"yolov10b.pt",
|
175 |
640,
|
176 |
0.25,
|
177 |
0.45,
|
178 |
],
|
179 |
+
[
|
180 |
+
"Video",
|
181 |
+
None,
|
182 |
+
"sample_video.mp4",
|
183 |
+
"yolov10m.pt",
|
184 |
+
640,
|
185 |
+
0.25,
|
186 |
+
0.45,
|
187 |
+
],
|
188 |
],
|
189 |
+
fn=lambda inputs: yolov10_inference(*inputs) if inputs[0] == "Image" else yolov10_video_inference(*inputs[1:]),
|
190 |
inputs=[
|
191 |
+
image_or_video,
|
192 |
image,
|
193 |
+
video,
|
194 |
model_id,
|
195 |
image_size,
|
196 |
conf_threshold,
|
197 |
iou_threshold,
|
198 |
],
|
199 |
+
outputs=[output_image, output_video],
|
200 |
cache_examples=True,
|
201 |
)
|
202 |
|
|
|
219 |
with gr.Column():
|
220 |
app()
|
221 |
|
222 |
+
gradio_app.launch(debug=True)
|