perplexity-chat / app.py
BotifyCloudAdmin's picture
Update app.py
338c269 verified
import os
import gradio as gr
from openai import OpenAI
from typing import List, Tuple
# Define available models
AVAILABLE_MODELS = {
"Sonar Pro": "sonar-pro",
"Sonar": "sonar",
}
PX_ENDPOINT_URL = "https://api.perplexity.ai"
PX_API_KEY = os.getenv('PX_KEY')
PASSWORD = os.getenv("PASSWD") # Store the password in an environment variable
px_client = OpenAI(base_url=PX_ENDPOINT_URL, api_key=PX_API_KEY)
def respond(
message: str,
history: List[Tuple[str, str]],
system_message: str,
model_choice: str,
max_tokens: int,
temperature: float,
top_p: float,
):
"""Handles chatbot responses with Perplexity AI."""
if model_choice not in AVAILABLE_MODELS:
return "Error: Invalid model selection."
messages = [{"role": "system", "content": system_message}]
for user_msg, assistant_msg in history:
if user_msg:
messages.append({"role": "user", "content": user_msg})
if assistant_msg:
messages.append({"role": "assistant", "content": assistant_msg})
messages.append({"role": "user", "content": message})
response = ""
citations = []
try:
stream = px_client.chat.completions.create(
model=AVAILABLE_MODELS[model_choice],
messages=messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
stream=True,
)
for chunk in stream:
if hasattr(chunk, "choices") and chunk.choices:
token = chunk.choices[0].delta.content or ""
response += token
yield response # Stream response as it arrives
if hasattr(chunk, "citations") and chunk.citations:
citations = chunk.citations
# Append citations as clickable links
if citations:
citation_text = "\n\nSources:\n" + "\n".join(
[f"[{i+1}] [{url}]({url})" for i, url in enumerate(citations)]
)
response += citation_text
yield response
except Exception as e:
yield f"Error: {str(e)}"
def check_password(input_password):
"""Validates the password before showing the chat interface."""
if input_password == PASSWORD:
return gr.update(visible=False), gr.update(visible=True)
else:
return gr.update(value="", interactive=True), gr.update(visible=False)
with gr.Blocks() as demo:
with gr.Column():
password_input = gr.Textbox(
type="password", label="Enter Password", interactive=True
)
submit_button = gr.Button("Submit")
error_message = gr.Textbox(
label="Error", visible=False, interactive=False
)
with gr.Column(visible=False) as chat_interface:
system_prompt = gr.Textbox(
value="You are a helpful assistant.", label="System message"
)
model_choice = gr.Dropdown(
choices=list(AVAILABLE_MODELS.keys()),
value=list(AVAILABLE_MODELS.keys())[0],
label="Select Model"
)
max_tokens = gr.Slider(
minimum=1, maximum=30000, value=2048, step=100, label="Max new tokens"
)
temperature = gr.Slider(
minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"
)
top_p = gr.Slider(
minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"
)
chat = gr.ChatInterface(
respond,
api_name=False,
chatbot=gr.Chatbot(height=400), # Set the desired height here
additional_inputs=[system_prompt, model_choice, max_tokens, temperature, top_p] # Pass extra parameters
)
submit_button.click(
check_password, inputs=password_input, outputs=[password_input, chat_interface]
)
if __name__ == "__main__":
demo.launch()