BorisovMaksim commited on
Commit
3f204d4
·
1 Parent(s): b13fe2e

ignore staff

Browse files
.gitignore CHANGED
@@ -1,4 +1,4 @@
1
  .idea/**
2
  .ipynb_checkpoints/**
3
  nohup.out
4
- __pycache__/
 
1
  .idea/**
2
  .ipynb_checkpoints/**
3
  nohup.out
4
+ __pycache__/**
denoisers/.ipynb_checkpoints/SpectralGating-checkpoint.py DELETED
@@ -1,26 +0,0 @@
1
- import noisereduce as nr
2
- import torch
3
- import torchaudio
4
-
5
-
6
- class SpectralGating(torch.nn.Module):
7
- """example: wav_noisy = '/media/public/datasets/denoising/DS_10283_2791/noisy_trainset_56spk_wav/p312_002.wav' """
8
- def __init__(self, rate=16000):
9
- super(SpectralGating, self).__init__()
10
- self.rate = rate
11
-
12
- def forward(self, wav):
13
- reduced_noise = torch.Tensor(nr.reduce_noise(y=wav, sr=self.rate))
14
- return reduced_noise
15
-
16
- def predict(self, wav_path, out_path):
17
- data, rate = torchaudio.load(wav_path)
18
- reduced_noise = torch.Tensor(nr.reduce_noise(y=data, sr=rate))
19
- torchaudio.save(out_path, reduced_noise, rate)
20
- return reduced_noise
21
-
22
-
23
-
24
-
25
-
26
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
denoisers/.ipynb_checkpoints/demucs-checkpoint.py DELETED
@@ -1,67 +0,0 @@
1
- import torch
2
-
3
-
4
- class Encoder(torch.nn.Module):
5
- def __init__(self, in_channels, out_channels,
6
- kernel_size_1=8, stride_1=4,
7
- kernel_size_2=1, stride_2=1):
8
- super(Encoder, self).__init__()
9
-
10
- self.conv1 = torch.nn.Conv1d(in_channels=in_channels, out_channels=out_channels,
11
- kernel_size=kernel_size_1, stride=stride_1)
12
- self.relu1 = torch.nn.ReLU()
13
- self.conv2 = torch.nn.Conv1d(in_channels=out_channels, out_channels=2 * out_channels,
14
- kernel_size=kernel_size_2, stride=stride_2)
15
- self.glu = torch.nn.GLU()
16
-
17
- def forward(self, x):
18
- x = self.relu1(self.conv1(x))
19
- x = self.glu(self.conv2(x))
20
- return x
21
-
22
-
23
- class Decoder(torch.nn.Module):
24
- def __init__(self, in_channels, out_channels,
25
- kernel_size_1=3, stride_1=1,
26
- kernel_size_2=8, stride_2=4):
27
- super(Decoder, self).__init__()
28
-
29
- self.conv1 = torch.nn.Conv1d(in_channels=in_channels, out_channels=2 * in_channels,
30
- kernel_size=kernel_size_1, stride=stride_1)
31
- self.glu = torch.nn.GLU()
32
- self.conv2 = torch.nn.ConvTranspose1d(in_channels=in_channels, out_channels=out_channels,
33
- kernel_size=kernel_size_2, stride=stride_2)
34
- self.relu = torch.nn.ReLU()
35
-
36
- def forward(self, x):
37
- x = self.glu(self.conv1(x))
38
- x = self.relu(self.conv2(x))
39
- return x
40
-
41
-
42
- class Demucs(torch.nn.Module):
43
- def __init__(self):
44
- super(Demucs, self).__init__()
45
-
46
- self.encoder1 = Encoder(in_channels=1, out_channels=64)
47
- self.encoder2 = Encoder(in_channels=64, out_channels=128)
48
- self.encoder3 = Encoder(in_channels=128, out_channels=256)
49
-
50
- self.lstm = torch.nn.LSTM(input_size=256, hidden_size=256, num_layers=2)
51
-
52
- self.decoder1 = Decoder(in_channels=256, out_channels=128)
53
- self.decoder2 = Decoder(in_channels=128, out_channels=64)
54
- self.decoder3 = Decoder(in_channels=64, out_channels=1)
55
-
56
- def forward(self, x):
57
- out1 = self.encoder1(x)
58
- out2 = self.encoder2(out1)
59
- out3 = self.encoder3(out2)
60
-
61
- x = self.lstm(out3)
62
-
63
- x = self.decoder1(x + out3)
64
- x = self.decoder2(x + out2)
65
- x = self.decoder3(x + out1)
66
-
67
- return x
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
denoisers/__pycache__/SpectralGating.cpython-38.pyc DELETED
Binary file (1.2 kB)
 
tutorial.ipynb DELETED
The diff for this file is too large to render. See raw diff