denoising / utils.py
BorisovMaksim's picture
rewrote demucs model
20c7778
raw
history blame
1.69 kB
import torchaudio
import torch
import matplotlib.pyplot as plt
from pathlib import Path
from torch.nn.functional import pad
def pad_cut_batch_audio(wavs, new_shape):
wav_length = wavs.shape[-1]
new_length = new_shape[-1]
if wav_length > new_length:
wavs = wavs[:, :, :new_length]
elif wav_length < new_length:
wavs = pad(wavs, (0, new_length - wav_length))
return wavs
def collect_valentini_paths(dataset_path):
clean_path = Path(dataset_path) / 'clean_testset_wav'
noisy_path = Path(dataset_path) / 'noisy_testset_wav'
clean_wavs = list(clean_path.glob("*"))
noisy_wavs = list(noisy_path.glob("*"))
return clean_wavs, noisy_wavs
def plot_spectrogram(stft, title="Spectrogram", xlim=None):
magnitude = stft.abs()
spectrogram = 20 * torch.log10(magnitude + 1e-8).numpy()
figure, axis = plt.subplots(1, 1)
img = axis.imshow(spectrogram, cmap="viridis", vmin=-100, vmax=0, origin="lower", aspect="auto")
figure.suptitle(title)
plt.colorbar(img, ax=axis)
plt.show()
def plot_mask(mask, title="Mask", xlim=None):
mask = mask.numpy()
figure, axis = plt.subplots(1, 1)
img = axis.imshow(mask, cmap="viridis", origin="lower", aspect="auto")
figure.suptitle(title)
plt.colorbar(img, ax=axis)
plt.show()
def generate_mixture(waveform_clean, waveform_noise, target_snr):
power_clean_signal = waveform_clean.pow(2).mean()
power_noise_signal = waveform_noise.pow(2).mean()
current_snr = 10 * torch.log10(power_clean_signal / power_noise_signal)
waveform_noise *= 10 ** (-(target_snr - current_snr) / 20)
return waveform_clean + waveform_noise