Spaces:
Runtime error
Runtime error
import torch | |
from torch.utils.data import Dataset | |
from pathlib import Path | |
import torchaudio | |
MAX_RANDOM_SEED = 1000 | |
class Valentini(Dataset): | |
def __init__(self, dataset_path, val_fraction, transform=None, valid=False, *args, **kwargs): | |
clean_path = Path(dataset_path) / 'clean_trainset_56spk_wav' | |
noisy_path = Path(dataset_path) / 'noisy_trainset_56spk_wav' | |
clean_wavs = list(clean_path.glob("*")) | |
noisy_wavs = list(noisy_path.glob("*")) | |
valid_threshold = int(len(clean_wavs) * val_fraction) | |
if valid: | |
self.clean_wavs = clean_wavs[:valid_threshold] | |
self.noisy_wavs = noisy_wavs[:valid_threshold] | |
else: | |
self.clean_wavs = clean_wavs[valid_threshold:] | |
self.noisy_wavs = noisy_wavs[valid_threshold:] | |
assert len(self.clean_wavs) == len(self.noisy_wavs) | |
self.transform = transform | |
self.valid = valid | |
def __len__(self): | |
return len(self.clean_wavs) | |
def __getitem__(self, idx): | |
noisy_wav, noisy_sr = torchaudio.load(self.noisy_wavs[idx]) | |
clean_wav, clean_sr = torchaudio.load(self.clean_wavs[idx]) | |
if self.transform: | |
random_seed = 0 if self.valid else torch.randint(MAX_RANDOM_SEED, (1,))[0] | |
torch.manual_seed(random_seed) | |
noisy_wav = self.transform(noisy_wav) | |
torch.manual_seed(random_seed) | |
clean_wav = self.transform(clean_wav) | |
return noisy_wav, clean_wav | |